
1

Traffic Engineering with Precomputed Pathbooks
Mathieu Leconte, Apostolos Destounis, and Georgios S. Paschos

Huawei Technologies, Mathematical and Algorithmic Sciences Laboratory, Paris, France

Abstract—This paper addresses a major challenge of traffic
engineering; the selection of a set of paths that minimize routing
cost for a random traffic matrix. We introduce the concept of
pathbook, a small set of paths to which we restrict routing.
The use of pathbook accelerates centralized traffic engineering
algorithms, and therefore is appealing for instantiating, config-
uring, and optimizing large software-based networks. However,
restricting routing to a few paths may lead to higher cost or
infeasibility. To this end, we introduce the problem of pathbook
design, wherein we search for a pathbook of constrained size that
minimizes the expected routing cost of the random traffic matrix,
which represents a prediction of the future traffic. The pathbook
design problem is of combinatorial nature, and we show that
it is NP-hard. For its convex relaxation, we derive an optimal
solution based on a projected subgradient method. The optimal
convex pathbook can be used to provide a suboptimal integral
pathbook. For large networks, the subgradient vector is large and
challenging to compute, hence we propose a coordinate-descent
method using the Gauss-Southwell rule, which prescribes a move
along the direction of largest subgradient element. We test the
performance of our solution on available data for dynamic traffic
matrices in the GEANT network and find benefits as much as one
and two orders of magnitude in terms of runtime with respect
to standard routing methods.

I. INTRODUCTION

Future wireless and wired networks will be based on
software. Technologies such as Software Defined Networking
(SDN) decouple control from data plane and allow to manage
and optimize the network from a central point, the network
controller. During deployment, the controller receives the
application requirements and solves large traffic engineering
problems in order to determine the desirable configuration
of the virtual network, which is then instantiated by means
of protocols like OpenFlow [1]. Similarly, during operation,
the controller continuously receives real-time monitoring in-
formation about the network state and solves large traffic
engineering problems in order to compute the desirable net-
work reconfiguration [2]. These optimization problems are of
combinatorial nature, and are often the bottleneck in execution
time of the entire network (re)configuration. For example, the
LP-relaxation of global routing in a 500-node IP network
may take hours to compute with a standard optimization tool
like CPLEX. This paper proposes the acceleration of traffic
engineering algorithms by means of precomputing paths based
on data monitoring.

In order to compute desirable network configurations, we
focus on the Minimum Cost Multicommodity Flow (MCF)
problem on a static topology with link capacities and costs.
MCF is one of the most important and challenging problems
in traffic engineering []–the importance of MCF for future
virtualized networks is further explained in Section II. For each
source-destination pair, a demand with certain bandwidth must

be routed through the network over multiple paths, subject to
link capacity constraints. The goal is to route the flow through
cheap links in order to minimize the total cost. The instance
of this problem is determined by the network graph (and its
attributes), and the traffic matrix: the collection of bandwidth
demands of each source-destination pair. Typically, traffic
matrices fluctuate over time [3]. In SDN, past monitorned
traffic matrices can be processed with machine learning tools
to extract a distribution of traffic matrices as a prediction
model for future traffic. The goal of this paper is to find a
path set restriction of limited size that achieves the smallest
expected routing cost under a distribution of traffic matrices.

More specifically, we make two observations: (1) solving
MCF for large networks is slow, but can be accelerated if we
restrict the problem to a small set of paths, (2) experimental
data from GEANT network show that the union of solutions
over 11642 traffic matrices scaled at 99% loading, requires no
more than six (6) paths per commodity. This naturally leads
to the pathbook design problem: find a small set of paths
that minimizes the expected routing cost over a distribution
of traffic matrices. Solving this problem optimally allows to
predetermine the set of paths of constrained size that best
serves the forecast traffic. Then, online, the network controller
receives a specific traffic matrix as input and solves the
routing problem restricted to this precomputed set of paths
to determine quickly the optimal routing.

A. Related work

Perhaps the simplest way to jointly route multiple demands
under capacity constraints is to use successive shortest paths
on a graph with updated remaining link capacities. This
greedy procedure quickly leads to suboptimal configurations,
so previous SDN techniques use a central multicommodity
flow optimization to globally reconfigure the network [4], [5].
Since the multicommodity flow solver is typically slow, the
network remains suboptimally configured for some time. In the
special case that the demands are known a priori, we can find
the optimal routing cost by creating a Bandwidth Calendar and
solving a time-expanded version of the mincost multicommod-
ity flow problem [6], [7]. The optimization approaches above
require as input the traffic matrix and assume that it remains
fixed.

Related to our pathbook design problem is the prior art on
robust optimization. Past works on QoS routing have focused
on robust network design, where the goal is to design network
capacities to withstand a variety of traffic matrices [8], and
robust routing where the goal is to find the best path allocation
to each commodity to withstand unpredictable future variations
of the traffic matrix [9], [10], [11]. Our work is a generalization

2

of this concept since we preselect a set of paths to optimize
performance under uncertainty.

A line of work has focused on preselecting paths to accel-
erate the difficult problem of constrained shortest paths; [12]
computes the all hops optimal path, i.e., the best path of length
h, for h = 1, 2, . . . , while [13] uses caching of good paths.
These schemes focus on QoS constraints but do not take into
account online congestion in an optimal manner, which is the
focus of this paper. In section V-C we adapt our framework
to include QoS constraints.

The most closely related line of work is oblivious rout-
ing [14], [15], [16], [17], which aims at computing offline
sets of paths and load-balancing weights for every possible
commodity, so that arriving demands can be routed with-
out even looking at the state of the network. To make the
oblivious routing more reactive to network state, and hence
more efficient, statistics of the typical traffic matrices are
incorporated in [18], [19]. Also, [20], [21] depart from the
original oblivious approach and use simple congestion metrics
on the pre-selected paths to take their online decisions: this is
called semi-oblivious routing. We extend the idea of oblivious
routing to the problem of minimizing routing cost, offering in
this way a novel framework for traffic engineering.

Finally, we point out that the pathbook design problem is
a generalization of the k− splittable multicommodity flow
problem [22], where each commodity has to be routed over
at most k paths. The k− splittable multicommodity max flow
problem is NP-hard in general [22]; [23] gives approximation
results for different cases. The min cost k− splittable multi-
commodity flow is introduced in [24], where a heuristic with
no approximation guarantees is presented. The latter problem
can be seen as a special case of the pathbook design problem,
for only one traffic matrix.

B. Our contribution

• We formulate the pathbook design problem for selecting
a subset of paths per commodity to statistically mini-
mize routing cost for a distribution of traffic matrices.
The pathbook design problem is shown to be NP-hard
and hard to approximate, and hence it is a challenging
problem.

• We provide a subgradient method for optimally solving
the convex pathbooks, i.e. the relaxation of the pathbook
design problem. The method is based on identifying a
subgradient vector as a function of easy-to-solve linear
subproblems. We show that the SPDA converges loga-
rithmically to an optimal convex pathbook. This convex
pathbook is then rounded to find an integral pathbook for
the original problem.

• When the paths are too many to enumerate, the sub-
gradient vector is of very high dimensions, and hence
impractical. In this case, we propose a coordinate-descent
method based on Gauss-Southwell rule. Although the
method has not guarantees for non-smooth constraint sets,
it is shown to perform well in our test data, discovering
quickly useful paths.

We show by experimentation on the GEANT network that
we can efficiently learn the statistics over a week, design a

small pathbook, and then solve the min cost MCF problem,
restricted to these pre-selected paths, for each traffic matrix at
near-optimal cost and much faster than solving the unrestricted
min cost MCF.

II. INTRODUCTION TO MINIMUM COST ROUTING

Our network is an undirected graph G = (N , E , {ce}, {be}),
where N is the set of nodes, E the set of links, and each link e
has an available bandwidth capacity be and a cost ce per unit of
bandwidth usage. The kth source-destination pair corresponds
to commodity k which has a bandwidth requirement of Tk,
and we denote by T the N ×N traffic matrix.1

Next we provide the path formulation of the well-known
minimum cost multicommodity flow (MCF) problem, com-
monly used to optimize routing for a traffic matrix T . Let
Pk denote the set of all paths of G connecting the source of
k to its destination. We introduce flow variables f , where fpk
denotes the fraction of Tk that flows over path p ∈ Pk. To
route the entire commodity we require:∑

p∈Pk

fpk = 1, ∀k, (path split). (1)

Additionally, the total flow crossing a link must not exceed its
capacity:∑

k

Tk
∑

p∈Pk: e∈p
fpk ≤ be, ∀e, (capacity const.). (2)

A flow f ≥ 0 satisfying (1)-(2) is said to be a feasible
multicommodity flow. The MCF problem is then to find a
feasible multicommodity flow of minimum cost:

min
f≥0,(1)-(2)

∑
k

Tk
∑
p∈Pk

fpkCp, (3)

where Cp is the cost of path p, calculated as Cp =
∑
e∈p ce.

A. Why MCF is important?

The MCF problem inherently captures the complexity of
simultaneously routing multiple commodities under the capac-
ity constraints (2), where the latter couple together the routing
allocations of different commodities. Since MCF searches for
a feasible flow that economizes the resource usage, for a traffic
matrix with low congestion the commodities are routed over
shortest paths, but for a traffic matrix with high congestion
certain commodities are rerouted over more expensive paths
to avoid congested links. The linear costs are general enough
to model (i) bandwidth usage costs, (ii) network congestion,
(iii) link latency, or more generally (iv) routing prices that
implement a specific policy. We note that our work extends
almost immediately to convex objectives, less the issue of
computing the subgradient of the expectation, which depending
on the chosen objective may be difficult or not. However, this
paper focuses on linear costs which are commonly used in
practice.

1Our static bandwidth model directly applies to MPLS tunnel reservations
and IP aggregated traffic [25], layer-2 WDM networks [26], and network
slicing [27]; in these applications it is customary to reserve bandwidth by
slightly overprovisioning the peak hour demand. Additionally, our model can
be used as a snapshot model for a time-varying online routing problem.

3

Practical traffic engineering typically requires generaliza-
tions of MCF, such as (i) single-path (integral) routing,
or equal-cost multipath routing, (ii) survivable routing with
backup paths, (iii) Quality of Service constraints in the form
of linear constraints on additive link latencies, (iv) distributed
solutions of MCF across multiple controllers, (v) online MCF
adapting to time-varying traffic matrices, and combinations.
These generalizations can be solved by extending MCF algo-
rithms in certain ways. Therefore, to achieve efficient traffic
engineering in future virtual networks, it is of paramount im-
portance to be able to quickly solve MCF for large networks.

B. Existing solutions of MCF

MCF is a linear program, and hence it can be solved in finite
steps polynomial to the input by the ellipsoid algorithm. In
practice, the best known technique is the Column Generation
(CG), typically yielding a ×10 performance in terms of
runtime with respect to the common simplex method [28].
In CG, we exploit the linear programming property of the
existence of a basic solution to maintain a small set of non-
zero columns, here a column corresponds to a path and a
basic solution must use K + E paths. At each iteration, we
solve the restricted linear program with the active paths as
variables. Then, using properties from Lagrangian theory and
strong duality, we can determine which path is added/removed
at each iteration. When CG terminates it provides an optimal
and sparse solution of MCF (3), as well as the optimal dual
variable for each constraint (1)-(2) [28]; we will use this
property in order to compute the subgradient and its highest
change coordinate in Sections IV and V, respectively.

The total number of optimization variables of (3) is
K |∪k∈KPk|, where ∪k∈KPk is the set of all routable paths.
In most graphs if we allow all possible paths to be routable,
|∪k∈KPk| becomes an immense number. On the other hand,
the non-zero variables used in CG are at most K + E (one
variable for each constraint), making the solution of large
MCF instances manageable, and CG the best known algorithm
for solving this problem. Nevertheless, our optimized c++
implementation of CG running on a state-of-the-art server
needs approximately 10 minutes to solve congested MCF
instances for networks of 500 nodes and 10k demands. In
the future network architectures, the controllers will need to
orchestrate large networks with complicated constraints, and
the orchestration should occur in a few seconds. Therefore,
we are motivated to accelerate the solution of MCF.

C. Accelerating MCF with pathbooks

Definition 1 (Pathbook). Let P̃k ⊂ Pk be a (small) subset of
the commodity k paths. The set ∪k∈KP̃k is called pathbook.

By replacing in (1)-(3) Pk with P̃k for all k, we may restrict
MCF to a pathbook. This is useful because if P̃ks are small, the
restricted problem can be solved much faster; we can directly
use the paths in the pathbook as the only active columns in
CG and solve the problem in one iteration. Essentially, the
precomputed pathbook replaces the effort of CG to search for
good paths. Our experiments explained in Sections VI show

Fig. 1: Total number of paths used in the optimal solutions
in 3 months of GEANT data (11460 traffic matrices with 15
minutes granularity) for mincost routing under medium (70%)
and heavy (99%) loading.

a 250-500 and 20-40 times acceleration of the MCF solution
with and without QoS constraints, respectively, yielding the
desired result in tens of milliseconds, see Section VI and Table
I.

Therefore, this paper proposes to accelerate MCF solution
by restricting feasible paths to a precomputed pathbook. Note
that the restriction can lead to lack of feasibility or increased
cost. For illustration, consider the simple case where the
pathbook contains only the shortest paths. As explained above,
this will lead to very fast optimal solutions at low congestion,
but also to infeasibility at high congestion, since the solver will
be unable to use reroutes to avoid congested links. Therefore
an important question is how can we restrict MCF to a small
pathbook without loss of optimality?

D. Useful observations on GEANT data

To amplify our hopes for finding a small pathbook we
make the following practical observation: a small set of paths
is sufficient to provide a joint solution to multiple traffic
matrices representing realistic data. Indeed, we experimented
with dynamic traffic matrices available at [29] for the GEANT
network. We selected the same capacity per link so that the
load is 70% and 99% of the maximum feasible, and computed
the optimal MCF solution for each of the available 11460
matrices. The union of paths used in all optimal solutions
is shown in fig. 1, where we observe that each commodity
only utilizes a very small number of paths during the entire
4 month duration. This motivates a novel approach to QoS
routing: instead of repeatedly computing shortest paths and
multicommodity flows, which is time consuming, we propose
a mechanism where (offline) a pathbook is identified that
performs well for a distribution of traffic matrices, and then
(online) the controller solves a restricted linear program to
derive the optimal routing for the new traffic matrix query. This
paper addresses a main challenge that arises in this scheme:
how to design the optimal pathbook of a constrained size.

III. THE PATHBOOK DESIGN PROBLEM

In this section we design a pathbook that optimizes the
statistical cost under a given distribution of traffic matrices.

A. Handling uncertain traffic matrices

The design of a pathbook is a slow process that occurs
offline, before the actual MCF query. In general the traffic

4

matrix is unknown and time-varying [30]. Hence, the pathbook
design is done by assuming that the queried traffic matrix is
random described by a probability distribution F (x) over RK+ ,
such that

F (x) = P(T1 ≤ x1, . . . , TK ≤ xK) .

The distribution F can be estimated in an SDN application
efficiently using monitored data [30]. For practical purposes,
F is typically available in the form of a histogram of quantized
traffic matrices. To simplify exposition below, we assume a
finite collection of M traffic matrices T 1, . . . ,TM , indexed by
m, and an associated probability distribution [pm]. However,
we remark that our approach also applies to the continuous
case using sampling techniques.

B. Problem formulation

We introduce binary variables Ppk, such that Ppk = 1 if and
only if p ∈ P̃k. Restricting to a pathbook P̃k will hereinafter
be described by the vector P = [Ppk]p∈Pall,k∈K . With this
notation, the minimum routing cost for traffic matrix Tm is
given by:

Cm(P) = min
f≥0

∑
k

Tmk
∑
p

fpkCp (4)

s.t.
∑
k

Tmk
∑
p: e∈p

fpk ≤ be, ∀e ∈ E, (5)∑
p

fpk = 1, ∀k ∈ K, (6)

fpk ≤ Ppk, ∀k ∈ K, p ∈ Pall (7)

where we have rewritten (3) for Tm, and additionally used (7)
to restrict the paths to the pathbook P . Since the traffic matrix
is random, the total routing cost we are interested in optimizing
will also be random. Thus, our objective is to minimize the
expected cost E[C(P)] =

∑
m pmC

m(P) incurred by using
a pathbook P of limited size.

Pathbook design problem:

min
Ppk∈{0,1}Pall×K

E [C(P)] (8)

s.t.
∑
p

Ppk ≤ P kmax, ∀k ∈ K. (9)

where P kmax is a commodity-dependent pathbook size param-
eter. Hereinafter, we will focus on studying feasible instances
of problem (8).

Because of its combinatorial nature, problem (8) is hard to
solve as the next theorem establishes.

Theorem 2 (Complexity). The pathbook design problem (8)
is NP-hard, and hard to approximate.

Proof: The first part is proven by reduction to the k-
splittable flow, where we are asked to find a flow over at
most k paths that minimizes the cost. The k-splittable flow
is known to be NP-hard and hard to approximate [23], [22].
Indeed, any instance of the k-splittable flow problem can be
solved by an algorithm that produces a solution to (8), by

creating a corresponding instance with M = 1, K = 1, and
P 1
max = k.
We additionally note that the pathbook design problem is

a generalization of the the integral multicommodity flow; it
can be seen by selecting instances with M = 1, and P kmax =
1, ∀k. The decision version of the integral multicommodity
flow is known to be strongly NP-complete [31]. Furthermore,
the networks we are interested in are typically large, hence the
pathbook design problem is computationally very challenging.

In the remaining of the paper we focus on solving the
fractional relaxation problem and getting an integral solution
through it.

IV. CONVEX PATHBOOKS

In this section w6e focus on the fractional relaxation of the
pathbook design problem (8), called convex pathbooks. The
fractional relaxation can provide a lower bound on the optimal
cost of (8), but it can also be used as a heuristic approximation.

We first relax the path selection variables Ppk allowing
them to take real values, i.e., P ∈ [0, 1]Pall×K instead of
{0, 1}Pall×K . In this context, Ppk = 0.5 means that the path p
can be used by commodity k to route up to 0.5Tmk traffic for
each realization m.

Lemma 3. The function P ∈ [0, 1]Pall×K 7→ E[Cm(P)] is
convex.

Proof: The proof is given in Appendix A.
Convex pathbooks problem:

min
Ppk∈[0,1]Pall×K

E [Cm(P)] (10)

s.t.
∑
p

Ppk ≤ P kmax, ∀k ∈ K. (11)

The convex pathbooks can be solved to optimality using
an iterative algorithm. We note that the function E[Cm(P)]
is linear by parts, and not everywhere differentiable. Hence,
we will design an iterative algorithm based on its subgradients
[32].

In order to compute the subgradient of E[Cm(P)] at a given
pathbook P , we focus first on the subproblem (4) for a single
traffic matrix m. Let us introduce the Lagrange multipliers
(αe), (βk) and (γpk) associated to the constraints (5)-(7)
of problem (4), as well as the Lagrangian function LmP at
pathbook P :

LmP (f ,α,β,γ) =
∑
pk

fpkTkCp +
∑
pk

γpk (fpk − Ppk)

+
∑
k

βk

(
1−

∑
p

fpk

)
+
∑
e

αe

 ∑
p,k: e∈p

fpkTk − be

 .

Above, γpk is the price of using a path more than it is
prescribed by the pathbook, βk is the price of not routing the
entire commodity, and αe is the price of exceeding the capacity
of a link. From strong duality of convex programming, the
value Cm(P) of problem (4) satisfies

Cm(P) = max
α,γ≥0,β∈R

min
f≥0

LmP (f ,α,β,γ) (12)

= LmP (f∗,α∗,β∗,γ∗) ,

5

where f∗,α∗,β∗,γ∗ denote optimal primal and dual values
of (4) for a specific m and P . This observation leads to the
computation of the subgradient of Cm(P):

Lemma 4. For traffic matrix m and pathbook P ∈ [0, 1]K ,
the vector −γ∗ = −γ∗(m,P) is a subgradient of Cm at P ,
i.e., for any P ′ ∈ [0, 1]K we have

Cm(P ′) ≥ Cm(P)− γ∗T (P ′ − P). (13)

Proof: The proof is given in Appendix B.
Then the subgradient vector of the objective function

E [Cm(P)] at P is given by −
∑
m pmγ

∗(m,P). Next, we
explain how to compute γ∗(m,P). As explained in Section
II, linear programs such as (4) are efficiently solved using
the Column Generation method [28], which also provides the
optimal Lagrange multipliers α∗ and β∗, and the values of
γ∗pk(m,P) for Ppk > 0. However the values of γ∗pk(m,P)
for Ppk = 0 are not provided directly as these paths are not
included as active columns. To compute the full subgradient
−γ∗(m,P) we need the following result:

Lemma 5. For a given traffic matrix Tm and pathbook P ,
let α∗, β∗ be optimal values for the Lagrangian multipliers
in (12) and let α∗p =

∑
e∈p α

∗
e . Then,

γ∗pk(m,P) = max{0, β∗k − Tmk (Cp + α∗p)}. (14)

Proof: The proof is given in Appendix C.
We note that all the dual variables above depend on (m,P)

as the discussion is made for a specific subproblem (4),
however for simplicity, we explicitly denote the relation only
for variables γpk. Additionally, since the subproblems (4)
must be solved for different traffic matrices Tm, they are
independent and can be solved in parallel, exploiting modern
multi-core processors.

Based on the discussion above, we propose the following
subgradient pathbook design algorithm:

Subgradient pathbook design algorithm (SPDA)

Input: Network G; Collection of traffic matrices (Tm);
probability distribution [pm]; pathbook size constraints
(P kmax).

Initialization: add to P the shortest path for each commodity.

Convex pathbook computation: Until convergence of P ,
iterate the following:

Computation of dual variables for each traffic matrix: For
each m, solve the MCF problem (4) restricted to the current
pathbook P . Obtain the values of the optimal Lagrange
multipliers α∗(m,P) and β∗(m,P).

Subgradient pathbook update: For each path p, compute
E
[
γ∗pk(m,P)

]
=
∑
p pmγ

∗
pk(m,P) using (14); update Ppk

according to

Ppk ← Ppk + s(t)E
[
γ∗pk(m,P)

]
,

where s(t) is a step-size at iteration t defined below. Project
P on the feasible space: (maybe here consider an orthogonal
projection on simplex)

Ppk ← max

{
0, Ppk

/∑
p

Ppk

}
.

Rounding: For each commodity k, sort the paths p by
decreasing order of Ppk. Keep only the first P kmax paths.

The performance of SPDA algorithm is provided by the
next theorem.

Theorem 6 (Performance of SPDA). Choose step sizes
s(t) = 1/

√
t, SPDA converges to an optimal convex pathbook

solution of (10).

Proof: The Theorem follows from Lemmas 3-5 and
classical results on subgradient algorithms (see [32]). This
is our main result, consider adding a proof here.

V. GAUSS-SOUTHWELL PATHBOOKS

The dimension of the pathbook vector P is equal to the
total number of paths in the graph, which grows superexpo-
nentially with the size for most types of graphs. Hence, in
large networks the computation of the subgradient vector at
each iteration of SPDA may be expensive. Additionally, it is
expected that most paths are not actually used by an optimal,
or even near-optimal, solution of (8). For this reason, in this
section we develop a coordinate subgradient method which
does not need to compute the entire subgradient vector at
each iteration, but instead is based on changing the pathbook
vector P along a single dimension, which corresponds to the
increase/decrease of a pathbook variable Ppk.

Our constraint set described by (4)-(7) and (9) is non-
smooth, and coordinate methods do not necessarily provide
descent directions if the set is not smooth [33]. Hence our pro-
posed method will not descend monotonically. Nevertheless,
our experiments show a satisfactory performance, whereby
the distance between the current best solution found and the
neighborhood of the optimal solution gradually decreases.

The classical coordinate descent method iterates over all
coordinates in a round robin fashion. Prior work shows that
the optimal convergence of coordinate descent methods can
also be attained by visiting each coordinate at random [34].
Here, we propose a less known rule called Gauss-Southwell
[], which moves along the direction of the steepest subgradi-
ent coordinate. Intuitively, choosing the coordinate with the
greatest value is a wiser move as it uses more information
from the subgradient vector, especially so if most of the
coordinates are zero. Prior work [35] analyzes the Gauss-
Southwell coordinate descent rule, showing that theoretically
it achieves the optimal convergence rate but additionally it
practically outperforms the randomized rule. The reason for
choosing Gauss-Southwell rule is more than just the good
convergence properties. We show below that Gauss-Southwell
rule corresponds to a shortest path problem.

6

A. Approximately computing the Gauss-Southwell rule

Our algorithm increases the pathbook along the direction
of the path p∗ that corresponds to the largest subgradient
coordinate E[γ∗pk]. Hence, the algorithm will increase the corre-
sponding value Ppk by a step-size parameter s(t) at iteration
t, and rescale P to satisfy the constraints (7). It remains to
explain how to find the path p∗.

Using Lemma 5 and writing β̃∗ = β∗k/T
m
k , we observe

that the Gauss-Southwell rule can be computed by solving the
following path problem:

p∗ ∈ arg minE
[
min

{
0, Cp + α∗p − β̃∗

}]
. (15)

Therefore, we are searching for a shortest path according to
the modified cost E

[
min

{
0, Cp + α∗p − β̃∗

}]
. Searching for

shortest path on cost-modified graphs is often encountered
when solving multicommodity flow problems [28], where
however the path cost modifications are equivalent to link cost
modifications. Here, due to the expectation of a minimum, the
cost is not additive in the edges used in the path. Therefore,
it cannot be captured through link costs, and so the path p∗

cannot be obtained by classical shortest path algorithms.
Instead, we can equivalently cast problem (15) as a con-

strained submodular minimization. We define the function
φmP : 2E → R,

φmP (A) = min

{
0,
∑
e∈A

(
Ce + α∗e(m,P)− β̃∗

)}
(16)

for A ⊆ E . It is easy to check that the functions φmP
are submodular [36], i.e., for any two sets A,B ⊆ E we
have φmP (A ∪ B) + φmP (A ∩ B) ≤ φmP (A) + φmP (B). It is
then immediate that the function E[φmP] is also submodular.
Ultimately, the Gauss-Southwell rule can be computed by
finding a set A minimizing E[φmP] under the constraint that
A is the link-set of a valid path for commodity k:

Minimum submodular cost path problem:

min
A⊆E

E[φmP (A)] (17)

s.t. A is a path of k.

Problem (17) is a special case of constrained submodular
minimization known to be NP-hard and with a worst-case
approximation ratio Ω(|N |2/3) [37]. However, prior work re-
ports encouraging practical performance obtained with convex
relaxation via the Lovasz extension of the submodular function
[38]. We next describe an adapted approximate algorithm for
our specific problem.

Approximate submodular-cost shortest path

General idea: Consider the Lovász extension E
[
φ̃mP

]
of

E[φmP], which is a convex function over [0, 1]|E| and agrees
with E[φmP] on all the extreme points {0, 1}|E|.
1) Find an optimizer f ∈ [0, 1]|E| of E

[
φ̃mP

]
by using projected

subgradient method.
2) Round the solution f into a path p.

We now detail steps 1-2:

1) Computation of a subgradient of E
[
φ̃mP

]
at f :

1) Sort the coordinates of f in decreasing order; let σ :
{1, . . . , |E|} → E be the permutation such that fσ(1) ≥
fσ(2) . . . ≥ fσ(|E|).

2) Define the sets Ai = {σ(j) : j ≤ i}, for all i ∈
{0, . . . , |E|}.

3) For all i, set the value of the coordinate σ(i) of the
subgradient y of E

[
φ̃mP

]
at f as follows:

yσ(i) = E[φmP (Ai)]− E[φmP (Ai−1)] .

2) Rounding of the fractional flow f ∈ [0, 1]|E| into a path
p:

1) Sort the coordinates of f in decreasing order, and define
the permutation σ and the sets (Ai) as above.

2) Find the smallest i ∈ {1, . . . , |E|} such that Ai contains
a valid path p for commodity k, and output p.

We propose the Gauss-Southwell pathbook design algorithm
GSPD, in which we replace the subgradient update in the
SPDA by a small step in the direction given by an approximate
submodular-cost shortest path.

B. Validation of GSPD
To prove the concept of our Gauss-Southwell heuristic we

conducted experiments on a random directed network of 50
nodes and 362 links shown in fig.2 (left). On this network we
generate 100 different traffic matrices, where 380 commodities
are active (sources-destinations shown with blue). We scale
each traffic matrix m so that it induces on the network a load
ρ very close to 95%, i.e., the MCF for Tm/0.95 is feasible
but saturates the network.

Solving the traffic matrices optimally, we observe that on
average the MCF solutions with all paths use 22.01 paths
per commodity and admit 44.25 units of traffic for a cost of
101.81. Comparatively, note that the shortest paths alone can
support a traffic of 15.88 at a cost of 10.5. Figure 2 shows the
performance of the pathbooks obtained using the GSPD for
various size limits P kmax. The cost ratio shown is the average
cost of pathbook-limited routing divided by the optimal for
the demand that our scheme successfully admits.

We observe that the obtained pathbooks allow us to route
all the traffic as soon as 6 paths per commodity are used.
However, the limited pathbook induces an extra cost for
routing. Yet, this cost is significant only when the pathbook
size limit is barely sufficient to sustain the traffic, and it
becomes negligible as we increase slightly the pathbook size.
In this case, a pathbook of 10 paths per commodity is sufficient
to yield very close to optimal behavior.

C. Dealing with constrained paths and failure scenarios

The proposed framework is suitable to deal with more
complex traffic engineering rules where each commodity has
a set of constraints on the paths it can be routed over. For
example, in QoS routing applications it is customary to incor-
porate latency constraints or to search for pairs of paths with

7

Fig. 2: Performance of pathbooks generated by the GSPD on
a random network of 50 nodes and 362 links.

certain disjointness properties to anticipate against failures of
some network element. The pathbook design algorithms need
only be modified in the part which updates the current path-
selection variables: SPDA will only keep the paths which
satisfy the constraints, and DFPD will only be modified in the
submodular cost shortest path procedure, where the rounding
part will select a valid constrained path. Finding constrained
paths online can be a hard task for some constraints (it is
already NP-complete to find a shortest path with latency
constraints [39]). Therefore, it is an important advantage of
our approach that these operations become entirely offline.

In addition, robustness to failures or to different network
states can be incorporated in our framework. Indeed, this
amounts to considering different network states Gi in addition
to different traffic matrices Tm. Then, we would solve the
slave problem (4) for different networks and different traffic
matrices. As an example, to create pathbooks resilient to (dis-
tributed) Denial-of-Service attacks, we can incorporate traffic
matrices with additional artificial large demands directed at
particular nodes in the network. This would create congestion
in some regions of the network, and the pathbooks obtained
would offer some paths avoiding these regions.

VI. A SCALABLE TRAFFIC ENGINEERING APPROACH FOR
SDN

In this Section, we use GSPD together with min cost MCF
to obtain a novel traffic engineering methodology for dynamic
traffic matrices. The novel traffic engineering proposed works
as follows. Traffic statistics are continuously collected in order
to obtain a distribution of traffic matrices. A recent summary
is fed into the pathbook design problem which repeatedly
provides pathbook updates at a slow time-scale. Then, when
the traffic matrix changes, a min cost MCF is executed,
restricted to only use paths from the most recent pathbook.

We use data from the SNDlib library for robust network
design [29]. The available data include 11460 traffic matrices
for a duration of 4 months on the GEANT network [40]. The
link capacities are not specified on the dataset.

We focus on two consecutive weeks, corresponding to traffic
matrices indexed from 8603 to 9948, shown in figure 3.
We assign equal latency demands for each commodity and
a random capacity and delay to each link. Then, we scale
the traffic matrices such that we have two operating regimes:
(i) a ”medium load” regime, where all traffic matrices, if

-� train pathbooks -� use pathbooks

Fig. 3: Our proposed traffic engineering methodology: Col-
lected data are used to train the pathbook design in an offline
manner while pathbooks are used to restrict the MCF problem
in real time.

rescaled by 10/7 are feasible when the min cost MCF is solved
by a Column Generation algorithm which uses the LARAC
algorithm [41] to choose new columns (paths) that satisfy the
latency constraints of each commodity and (ii) a ”high load”
regime, where the aforementioned algorithm admits 95% of
all traffic.

As seen in Fig. 3, we use the first week of data to train our
pathbooks; we apply GSPD on the data for different pathbook
sizes, as explained in V-C in order to ensure that only paths
that satisfy the latency constraints are kept. For the next week
of data, we use solve a min cost MCF problem that is restricted
to use only paths on the derived pathbooks for each traffic
matrix.

We compare with the algorithm that, for each traffic matrix,
solves the min cost MCF using Column Generation with
LARAC to find paths (columns) with minimum augmented
cost and satisfying the latency constraints at each iteration
(which was also used to scale the traffic matrices as explained
before). We term this algorithm ”full MCF”. Results are shown
in Fig. 4. We can see from Fig. 4a that a pathbook size of 10
paths per commodity is already enough to accept almost all
traffic that full MCF accepts. In addition, as Fig. 4b shows,
there is almost no difference in the cost by restricting to
a pathbook of 20 paths (the pathbook-restricted MCF has
lower cost than the full MCF at small pathbook sizes because
a sizeable portion of the traffic is not admitted). Finally,
restricting to a pathbook can significantly speed up the routing
decision: Fig. 4c depicts the speedup gained by using a
pathbook, i.e. the ratio of the runtime of the full MCF over the
MCF constrained to the pathbook, and we can see that using
pathbooks can speed up the routing decision by some hundreds
of times. This is because the full MCF needs to search for
delay-constrained paths for each CG iteration, which is a time-
consuming operation, while in our approach good columns for
the min cost MCF problem have already been selected offline,
during the pathbook construction phase.

Overall, these results suggest that using pathbooks we can
significantly speed up the routing process with essentially no
loss of optimality: For 25 paths per commodity the proposed
framework achieves almost identical performance with full
MCF, but is 500 and 250 times faster in high and medium
loading, respectively.

When the commodities do not have latency constraints,
we observe a similar behavior with respect to a Column

8

Generation algorithm for the min cost MCF at every traffic
matrix. Detailed runtimes for medium loaded networks are
showin in Table I. In the case of no latency constraints, the
pathbook MCF is one order of magnitude faster than the full
MCF, because the CG uses unconstrained shortest paths, which
are less time consuming that constrained ones.

Pathbook
size

Pathbook MCF,
latency

full MCF,
latency

Pathbook MCF,
no latency

full MCF,
no latency

1 0.0187 15.2534 0.0148 1.3083
2 0.0297 15.2534 0.0281 1.3083
4 0.0381 15.2534 0.0449 1.3083
6 0.0423 15.2534 0.0489 1.3083
10 0.0507 15.2534 0.0576 1.3083
15 0.0587 15.2534 0.0594 1.3083
20 0.0897 15.2534 0.0581 1.3083
25 0.0917 15.2534 0.0616 1.3083

TABLE I: Average runtimes (in seconds) for medium load.

VII. CONCLUSIONS

We decomposed online minimum cost routing into (a)
offline pathbook design, using past traffic data and (b) solving
the MCF for the current traffic matrix, restricting it on the
paths already present in the pathbook. We have proposed a
pathbook generation method, based on the Gauss-Southwell
rule and relaxations for the resulting minimum submodular
shortest path problem at each iteration based on Lovasz
extensions. Our experimental results on the GEANT network
show that, with this decomposition we can get a solution of
the min cost MCF problem one to two orders of magnitude
faster than solving the MCF for each traffic matrix, with
essentially no loss of optimality. Interesting could be results
on the proposed pathbook design algorithms (and such results
for the pathbook design problem in general) and studying
the impact on traffic matrix prediction on the performance
of pathbook-based traffic engineering.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[2] K. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent network
updates,” ArXiV e-prints, abs/1609.02305, 2016.

[3] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and
Y. Zhang, “Experience in measuring backbone traffic variability: Models,
metrics, measurements and meaning,” in ACM IMW, 2002.

[4] S. Paris, A. Destounis, L. Maggi, G. S. Paschos, and J. Leguay, “Con-
trolling Flow Reconfigurations in SDN,” in Proc. of IEEE INFOCOM,
2016.

[5] S. Brandt, K. T. Förster, and R. Wattenhofer, “On consistent migration
of flows in sdns,” in IEEE INFOCOM, 2016.

[6] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” Proc. of ACM SIGCOMM, 2014.

[7] L. Gkatzikis, S. Paris, I. Steiakogiannakis, and S. Chouvardas, “Band-
width calendaring: Dynamic services scheduling over software defined
networks,” in Proc. of ICC, 2016.

[8] C. Chekuri, “Routing and network design with robustness to changing
or uncertain traffic demands,” SIGACT News, pp. 106–129, 2007.

[9] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic engineering in dynamic networks,” Proc. of ACM SIG-
COMM, 2006.

[10] V. Tabatabaee, A. Kashyap, B. Bhattacharjee, R. J. La, and M. A.
Shayman, “Robust routing with unknown traffic matrices,” in Proc. of
IEEE INFOCOM, 2007.

[11] A. Gunnar and M. Johansson, “Robust load-balancing under statistical
uncertainty: Models and polynomial-time algorithms,” in Proc. of NGI,
2009.

[12] A. Orda and A. Sprintson, “Precomputation schemes for qos routing,”
IEEE/ACM Transactions on Networking, pp. 578–591, 2003.

[13] M. Peyravian and A. D. Kshemkalyani, “Network path caching,” Com-
puter Communications, pp. 605–614, 1997.

[14] H. Räcke, “Minimizing congestion in general networks,” in Proc. of
IEEE FoCS, 2002.

[15] S. Nelakuditi, Z.-L. Zhang, and D. H. C. Du, “On selection of candidate
paths for proportional routing,” Computer Networks, pp. 79–102, 2004.

[16] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, “Optimal oblivious
routing in polynomial time,” in Proc. of ACM STOC, 2003.

[17] M. Englert and H. Räcke, “Oblivious routing for the lp-norm,” in Proc. of
IEEE FOCS, 2009.

[18] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs,” in Proc. of ACM SIGCOMM, 2003.

[19] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Towsley,
“On optimal routing with multiple traffic matrices,” in Proc. of IEEE
INFOCOM, 2005.

[20] M. Hajiaghayi, R. Kleinberg, and T. Leighton, “Semi-oblivious routing:
lower bounds,” in Proc. of ACM SODA, 2007.

[21] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, and R. Soulé,
“Kulfi: Robust traffic engineering using semi-oblivious routing,” arXiv
preprint:1603.01203, 2016.

[22] G. Baier, E. Köhler, and M. Skutella, “The k-splittable flow problem,”
Algorithmica, vol. 42, no. 3, pp. 231–248, 2005.

[23] R. Koch, M. Skutella, and I. Spenke, “Approximation and complexity
of k–splittable flows,” in Proc. of WAOA, 2005.

[24] M. Gamst, P. N. Jensen, D. Pisinger, and C. Plum, “Two- and three-
index formulations of the minimum cost multicommodity k-splittable
flow problem,” European Journal of Operational Research, vol. 202,
no. 1, pp. 82 – 89, 2010.

[25] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys Tutorials, vol. 10, no. 1, pp. 36–56, First 2008.

[26] R. Dutta and G. N. Rouskas, “Traffic grooming in wdm networks: past
and future,” IEEE Network, vol. 16, no. 6, pp. 46–56, Nov 2002.

[27] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet), Oct 2015, pp.
171–177.

[28] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Prentice
Hall, 1993.

[29] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” Networks, pp. 276–286, 2010.

[30] Y. Gong, X. Wang, M. Malboubi, S. Wang, S. Xu, and C.-N. Chuah,
“Towards accurate online traffic matrix estimation in software-defined
networks,” in Proc. of SOSR, 2015.

[31] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975), Oct 1975, pp. 184–193.

[32] A. Nedi and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimization,
vol. 19, no. 4, pp. 1757–1780, 2009.

[33] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, Sep. 1999.
[34] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale

optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[35] J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke,
“Coordinate Descent Converges Faster with the Gauss-southwell Rule
Than Random Selection,” in ICML, 2015.

[36] L. Lovász, “Submodular functions and convexity,” in Mathematical
Programming The State of the Art. Springer, 1983, pp. 235–257.

[37] R. Iyer, S. Jegelka, and J. Bilmes, “Monotone closure of relaxed con-
straints in submodular optimization: Connections between minimization
and maximization: Extended version,” in Proc. of UAI, 2014.

[38] ——, “Fast semidifferential-based submodular function optimization:
Extended version,” in Proc. of ICML, 2013.

[39] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness,” 1979.

[40] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
Comput. Commun. Rev., pp. 83–86, 2006.

[41] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, “Lagrange relaxation
based method for the QoS routing problem,” in IEEE INFOCOM, 2001.

9

Pathbook size

Fraction of admitted traffic

(a)
Pathbook size

Relative excess cost

(b)
Pathbook size

Speedup

(c)

Fig. 4: Experiment results for the performance of pathbooks generated by the GSPD in min cost MCF with latency constraints
on GEANT data: (a) Fractions of total admitted traffic (b) Relative excess cost paid with respect to the full min cost MCF (c)
Speedup with respect to the full min cost MCF

APPENDIX A
PROOF OF LEMMA 3

Let P (1) and P (2) be two pathbooks satisfying the con-
straint (9); and let (fm(1)) and (fm(2)) be optimal flow
allocations attaining costs (Cm(P (1))) and (Cm(P (1)))
respectively, while verifying the associated constraints (5)-(7).
For any α ∈ [0, 1], we have that αfm(1) + (1 − α)fm(2)
also satisfy the linear constraints (5),(6), which do not depend
on the path selection, and it also satisfies the coupling con-
straint (7) for the pathbook αP (1) + (1 − α)P (2). Hence,
the flow allocation αfm(1) + (1 − α)fm(2) is feasible for
the MCF problem associated to the traffic pattern m, and
it attains the cost αCm(P (1)) + (1 − α)Cm(P (2)), which
proves that Cm(αP (1)+(1−α)P (2)) ≤ αCm(P (1))+(1−
α)Cm(P (2)). As Cm is a convex function of P , so is the
weighted sum E[Cm(P)].

APPENDIX B
PROOF OF LEMMA 4

The Lagrangian function being multi-linear, we can consider
the maximizations and minimizations in any order. We define

L̃mP (γ) = max
α≥0,β∈R

min
f≥0

LmP (f ,α,β,γ).

We notice that the optimal values of f ,α,β in the definition
of L̃mP (γ) actually do not depend on P , only the value of
the function is affected by the term −

∑
p,k γpkPpk. As a

consequence, we have the following:

Cm(P) = max
γ≥0

L̃mP (γ) = L̃mP (γ∗(m,P))

= L̃mP ′ (γ
∗(m,P))− γ∗(m,P)T (P − P ′)

≤ L̃mP ′
(
γ∗(m,P ′)

)
− γ∗(m,P)T (P − P ′)

= Cm(P ′)− γ∗(m,P)T (P − P ′).

APPENDIX C
PROOF OF LEMMA 5

This result follows from the Karush-Kuhn-Tucker (KKT)
conditions at f∗, α∗, β∗, γ∗: for all p, k, we have

Tk(Cp + α∗p)− β∗k + γ∗pk = ξpk ≥ 0,

f∗pk − Ppk ≤ 0,

f∗pkξpk = 0, γ∗pk
(
Ppk − f∗pk

)
= 0,

where we omitted the KKT conditions which we will not use.
From here there are three cases: if Ppk = f∗pk > 0, then
ξpk = 0 and the first line yields γ∗pk = β∗k − Tmk (Cp + α∗p);
if Ppk > f∗pk, then γ∗pk = 0 immediately, and we note that
β∗k−Tmk (Cp+α∗p) = −ξpk ≤ 0. In the last case, Ppk = f∗pk =
0, then any positive value can be chosen for γ∗pk. Hence, the
expression γ∗pk = max{0, β∗k − Tmk (Cp + α∗p)} works for all
the cases.

