
Dynamic CPU Scheduling for QoS Provisioning

Kostas Katsalis
University of Thessaly, Greece

Email: kkatsalis@uth.gr

Georgios S. Paschos
LIDS Lab

MIT MA, USA
Email: gpasxos@mit.edu

Leandros Tassiulas
CERTH-ITI

University of Thessaly, Greece
Email: leandros@uth.gr

Yiannis Viniotis
Department of ECE

NCSU, USA
Email: candice@ncsu.edu

Abstract—Distributed, large-scale, enterprise applications are
commonly supported in multi-tier data-center environments. In
this paper, we study a scheduling problem for sharing CPU time
in a cluster of servers among a number of enterprise customers.
Such sharing is typically mandated by service differentiation
requirements and QoS guarantees. Our main contribution is
the formal definition of a CPU allocation/scheduling problem
with respect to QoS quarantees and evaluation of scheduling
policies that address the following design criteria: they have
provable performance, they do not require a priori knowledge of
service statistics and their overhead is adjustable. We provide the
necessary mathematical framework for policies that satisfy the
above criteria and evaluate proposed algorithms via theoretical
analysis and extensive simulations.

Keywords—Appliances, Application Delivery Control, Service
Differentiation, Multitier Data Centers, Scheduling

I. INTRODUCTION

A typical, enterprise data center model is based on the
multi-tier architecture[11] shown in Figure 1. The switch fabric
consists of core, aggregation and access tier: core switches
provide the interface for the flows entering or leaving the data
center; aggregation switches refer to the aggregation of traffic
to and from the access switches; and, access switches is the
point of server attachment to the data center switch fabric. In
addition, servers host applications are also “tiered”. In Figure
1 we depict two such tiers, labelled as service and server
tiers. Servers in the latter tier execute the main application
processing; servers in the former tier are typically deployed
to perform specialized preprocessing of user requests, such as
SSL offloading, load balancing, firewalling, etc.

In this work, we study a resource provisioning problem
that arises when a cluster of servers is accessed by a number
of different Service Domains (SDs), i.e. classes of customers
competing for CPU resources. Such customers are often large
enterprises that initiate a large volume of requests for web
service processing, authentication services or protocol bridging
and integration functions. In a typical scenario, these large
customers negotiate Service Level Agreements (SLAs) with
the service providers. We focus on SLAs in which processing
time in the service tier is provisioned/guaranteed to the service
domains in situations of overload. Usually, in such systems
overload periods are defined by congestion on the queueing
services during peak usage intervals.

The designer of the data center can control incoming traffic
in a variety of ways. In the context of the multitier data center
architecture, we assume that a controller is placed in the switch
fabric; the controller places the incoming requests into queues
organized by service domain. It then decides how to schedule

Core
Switching

Aggregation
Switching

Access
Switching

Server Tier

Switch Fabric

Service Tier

Requests Requests

Fig. 1. Multitier enterprise data center architecture.

the requests from these queues to the servers residing in the
service tier. This decision is based on a desired allocation of
the CPU time to the service domains, as we will see in detail
in the next section.

Our contributions are the following: First, we provide a
mathematical formulation of the CPU provisioning problem.
Besides services provided in data centers, the formulation is
applicable to a broad family of scheduling problems where
differentiation of resources must be provided, like for example
in OS thread/process scheduling or multi-processing systems.
Then, we formally define and prove the necessary conditions
that will form a class of policies that are oblivious to service
time statistics and fulfil the design criteria. We propose two
policies and evaluate them based on their convergence speed,
the required overhead and their insensitivity to system and
statistical assumptions.

The paper is organized as follows: in Section II, we provide
the motivation for this work, in Section III we describe the
system model and the objectives, in Section IV, we define
a class of scheduling policies that meets the objectives and
outline two policies of this class. In Section V, we evaluate the
performance of the proposed policies. We summarize previous
related work in Section VI and conclude our study in Section
VII.

II. MOTIVATION AND PROOF OF CONCEPT

The SLA we consider stems directly from the IT industry.
It is common practice in such environments that the provider
offers contracts with different charges/levels/types of service,
based on whether the system is under “normal” or “overload”
conditions. What constitutes normal and overload conditions
depends on the service provider.

In typical contracts, metrics used for SLAs governing oper-
ations during normal load involve response times, availability,
throughput, losses, etc. SLAs for overload conditions involve

fewer and/or “simpler” metrics; the main idea is that under load
stress, the system cannot effectively guarantee the same level
of performance as the normal load metrics describe. The most
widely used metric for overload conditions is CPU utilization;
a typical SLA is: “(during overload conditions) guarantee
that service domain i gets a predefined percentile pi of the
appliance CPU capacity”.

III. PROBLEM STATEMENT

In the context of the data center design shown in Figure 1,
we are interested in allocating CPU time in all the servers of
the service tier to traffic that arrives through the switch fabric.
We formalize this problem, using an abstract system model.

A. System model

The system model is depicted in Figure 2 and consists
of one controller, a set M = {1, . . . ,m} of servers, and a
set D = {1, . . . , d} of service domains (customer classes).
1 The controller maintains a queue for each domain that
accommodates incoming requests in a First-Come-First-Serve
(FCFS) manner. Since we focus on overload conditions, we
assume saturated arrival conditions, i.e., each queue has always
at least one request waiting to be serviced.

The controller obtains feedback signals from the servers at
time instances when service is completed, selects one domain
and forwards a request from this domain to the server that
just finished servicing. Note that the controller cannot make
selections at any other times, since preemption at servers is not
allowed. The selection is done with the objective of satisfying
the SLA we describe in Section III-C. In addition, we make
the following assumptions for modelling simplicity and we
discuss the impact of these assumptions in the next subsection:
we assume that the feedback signals from any server to the
controller is instantaneous; moreover, the transmission of a
request from a controller queue to a server also takes zero
time. The service times are generally distributed, with the
same probability distribution and with finite mean for all the
domains, where the value of the mean is unknown.

B. Justification of the chosen system and control model

The queues and the controller are located outside the
service tier (i.e., in the core router): by keeping queues at
the router side and making decisions at service completion
instants, one makes sure that the control action is taken with
the full system state known. If instead, we queued requests
in the servers, the routing decisions would be made much
earlier than the service instant and latest information about
the aggregate CPU times could not be used. The instantaneous
feedback and request transfer assumption would hold true in
a practical deployment of our system, if a) a small, ping-pong
buffering mechanism is used in the server and b) the server-
controller interconnection is fast, compared to CPU processing
times. Such a buffer would hold one to two requests at a time,
ensuring that the server does not go idle while the controller
decides the next allocation.

1In typical data center implementations, the controller can be housed in
any device that terminates TCP/UDP connections (e.g., a core router, an http
router/sprayer).

Feedback signaling

domain d

domain 1

...Router
m

1

Controller...

Fig. 2. System model.

C. The formal SLA statement (T-SLA)

The service differentiation problem we consider can be
formally expressed by means of a Technical SLA (T-SLA):
Let i = 1, . . . , d, be the number of service domains utilizing
the CPUs in the m servers of the service tier; let pi be given
strictly positive constants that sum up to 1. Allocate a percent
pi of the CPU capacity in the service tier to service domain i,
using an appropriate scheduling mechanism at the controller.

D. Definitions for the mathematical statement

Let N+,R+ denote the sets of nonnegative integer and real
numbers respectively. Consider the time instants tk, k ∈ N+ at
which a server becomes empty and can serve another request.
Formally, we define the action space Z = {1, 2, . . . , d} as
the set of all domains. We say that the controller takes action
a(tk) = i ∈ Z at time tk if it selects a request from domain
i to forward to the server that became available at time tk. A
scheduling policy π (or policy π for simplicity) is a rule that
determines the control actions across time.

Definition 1 (Total service of domain i): Define the total
service of domain i, Fπi (t) : R+ 7−→ R+, as the aggregate
CPU time that was allocated to domain i until time t under
policy π. Note that Fπi (t) is a summation of service time
random variables.

Definition 2 (Utilization of domain i): The utilization of
domain i under policy π up to time t, Uπi (t), is defined as

Uπi (t)
.
=
Fπi (t)

mt
, ∀i ∈ D, t ∈ R+. (1)

First, note that
∑
i∈D U

π
i (t) ≤ 1 for all t, π since∑

i∈D F
π
i (t), the total service obtained by the domains, must

be smaller or equal to the total time that the servers have been
operating which is equal to mt. Moreover,

∑
i∈D U

π
i (t) ≤ 1

holds with equality if all servers CPU have no idle periods.

Definition 3 (Non-idling policies): A policy that satisfies∑
i∈D

Uπi (t) = 1, for all t

is called a non-idling policy.

We define further the (long-term, steady-state, infinite
horizon) metric of the allotted CPU to each domain i.

Definition 4 (Allotted CPU to domain i): The allotted
percent of CPU capacity to domain i, under policy π is

Ũi(π)
.
= lim
t→∞

Uπi (t) (2)

Ũi(π) is a long-term performance criterion achieved by policy
π. We use the limit instead of lim inf since we examine policies
that we know a priori that will achieve steady state.

Formally, the objective of the (T-SLA) can be stated as
follows: Design a scheduling policy π such that for given
percentiles pi it achieves (in the long-run)

Ũi(π) = lim
t→∞

Uπi (t) = pi, i = 1, 2, . . . , d. (3)

In the following we define and present a class of policies
that can meet this objecitve.

IV. PROPOSED POLICIES

A “desirable” scheduling policy has several properties: (a)
it achieves the T-SLA, (b) converges to the T-SLA fast, (c)
is agnostic to the service statistics and, (d) requires a small
number of calculations per time unit. Apart from (a) which
is obvious, convergence (b) is crucial for achieving the goal
within short periods. The knowledge of service statistics (c)
and the decision load (d) are both related to the communication
overhead and CPU costs and are very important considerations
for practical systems.

To the best of our knowledge, no single scheduling policy
exists that is superior in all these properties; our approach in
this paper is to investigate policies that excel in some of the
above criteria and give the designer the ability to trade off
in order to satisfy the rest. In particular, we define a class of
policies which have properties (a) and (c) and are able to trade
off for (b) and (d).

A. The need for a dynamic policy

A (plain) Round Robin (RR) policy utilizes the idea of
the round during which each service domain is served once.
Let m = 1 the number of servers and the random variable
Ln =

∑D
k=1 Sk(n) be the duration of round n, where Sk(n)

is the service received by domain k during that period. By
the Strong Law of Large Numbers (SLLN), the summations
of service times for a given service domain will converge to
the mean:

URR
i = lim

m→∞

∑m
n=1 Si(n)∑m
n=1 Ln

=
E[Si(n)]∑D
k=1 E[Sk(n)]

Since the targets pi of T-SLA are arbitrary, in general
the RR policy cannot satisfy the objective in eq (3). By
similar arguments, the same conclusion holds true for static
probabilistic policies and Weighted Round Robin policies in
which weights are assigned statically. These schemes can only
reach arbitrary defined goals in the case when the service
process is known in advance. This gives rise to dynamic
scheduling policies that act agnostically to service rates and
adapt to changing conditions.

We focus on dynamic RR policies where the idea of a
round is used again, but the number of times each domain
is served is controlled in a dynamic way; round by round a
decision is made as follows: 1)At the beginning of a new round
a list of domains, accompanied by weights wi for every domain
i, is selected by the controller.2) All the domains in the list
are scheduled for server CPU service that many times as the
weight indicates. 3) When the round is over, a new list as well
as new weights are calculated.

B. Class Π of dynamic policies achieving the SLA

In what follows, we define tn ∈ R+, to be the time instance
when round n begins, where n ∈ N+. We will use index i
for the set of service domains D .

= {1, . . . , d} and index j
for the set of servers M .

= {1, . . . ,m}. Recall that Si is a
random variable describing the service time of domain i, with
E[Si] <∞. At each round n, wi(tn) requests of domain i are
serviced, with the number selected by the scheduling policy.
The length of round n is denoted by Ln and given by

Ln =
∑
i∈D

wi(tn)∑
k=1

Si(k),

where Si(k) are independent random variables identically
distributed with Si. For all the non-idling policies operating
in rounds it holds that at least one service domain i with
wi(tn) > 0 participates in each round and thus for any round n
we can write: Ln ≥ mini Si a.s. Next, we further constraint
the set of policies:

Definition 5: A bounded-round policy satisfies

P(Ln <∞) = 1.

Our first analysis result states that bounded-round policies
achieve steady state.

Theorem 1 (Convergence): The limit of Ui(t) as t → ∞
of a bounded-round policy π exists almost surely.

The proof of this theorem is based in the following recursive
form, where Zπi (n) is the total service that domain i received
within the nth round2 :

Uπi (tn+1) =
tn
tn+1

Uπi (tn) +
Zπi (n)

tn+1
, (4)

Consider now the following set of policies:

Definition 6 (Fair policies): A policy that assigns wi(t) =
0 whenever Uπi (tn+1) > pi is called fair.

First note that a fair policy is a non-idling policy for
the case of saturated queues. We prove this by contradiction.
Assume a fair policy that is also an idling policy. Assuming∑
i∈D U

π
i (t) < 1 for some t, there exists a time period

[t0, t0 + δ], δ > 0, which contains an empty round starting
at tk, i.e., wi(tk) = 0, ∀i ∈ D, tk ∈ [t0, t0 + δ]. This implies
that Uπi (tk) > pi, ∀i ∈ D. Summing up, we get∑

i∈D
Uπi (tk) >

∑
i∈D

pi = 1,

which is a contradiction. Thus, let us consider the set of
policies Π, which contains all bounded-round, fair policies.
As we have shown, if π ∈ Π, then π is also non-idling.

Theorem 2 (Optimality of Π): The bounded-round, fair
policies achieve the T-SLA.

Proof: Consider any bounded-round fair policy π ∈ Π.
From Theorem 1 we conclude that the limit lim

t→∞
Uπi (t) exists.

Assume that for some domain i we have

lim
n→∞

Uπi (tn) = ũi > pi

2Due to page limitations, the proof is omitted from this version of this work.

and pi > 0. Then pick ε < ũi − pi, the limit guarantees that
there exists n0(ε) such that for all n > n0 we will have

Uπi (tn) > ũi − ε > pi

and thus, wi(tn) = 0 for all n > n0. The latter, however,
implies that lim

n→∞
Uπi (tn) = 0 with probability 1 which is a

contradiction. Thus, lim
n→∞

Uπi (t) ≤ pi.

Then, partition the set of domains D into the subsets Dl,
Dh such that: {

ũi < pi if i ∈ Dl
ũi = pi if i ∈ Dh

Since we have shown that it is impossible to have ũi > pi and
all limits exist, the above partition is valid. Assume then that
the set Dl is non-empty, summing over the union we have:∑

i∈Dl∪Dh

ũi <
∑

i∈Dl∪Dh

pi = 1,

which is a contradiction since
∑
i Ui(t, BGP) = 1 for all t.

From the above discussion, we conclude that for all bounded-
round fair policies

lim
n→∞

Uπi (tn) = pi, ∀i ∈ D.

In the following, we examine two policies that belong to
the class of bounded-round fair policies defined above.

1) Below Goal Participates (BGP): Under the BGP pol-
icy, in round n (that starts at time tn) all the service domains
with utilization UBGP

i (tn) ≤ pi have weights with wi(tn) = 1;
the rest have zero weights. In other words, only the service
domains that have allotted CPU time less than or equal to
their T-SLA goal are given one slot; the rest are given none.

To face overhead limitations, T − BGP , a variation of
the policy of BGP , is proposed. To avoid communication
overhead we keep the calculated weights constant for a fixed
period of time T . More formally, for an integer number of k
rounds, weights remain the same, as long as tn+k < tn + T ,
meaning wni = wn+1

i = ... = wn+ki for any domain i. In the
time instant when for the minimum k, tn+k ≥ tn + T is true,
k is reset to zero and new weights are calculated for the new
round according to BGP policy.

2) Only Most Suffering (OMS): Under the OMS policy,
each round is composed of only one domain which is served
once. The selected domain is the one with the largest amount
of missing service. More precisely, at a decision instant tn,
we set wi(tn) = 0, i 6= j and wj(tn) = 1 where j =
arg mink∈D{UOMS

k ((tn))− pk}. As a policy, OMS resembles
the family of maximum weight policies [2] and the Join the
Shortest Queue policy; both are well-known optimal policies
and can be thought of as a degenerate case of the Round
Robin scheduling policies. Note, however, that OMS is a very
dynamic policy and introduces a high communication and
computation overhead; it must calculate a decision at every
service completion instant. Similar to T-BGP, we define T-
OMS, the T − delayed version of the OMS policy, in order
to provide a trade-off between overhead and performance.

Note that all four policies are clearly fair policies and
moreover they are bounded-round policies since we have
(almost surely):

LBGPn ≤
∑
i∈D

Si, L
T−BGP
n ≤ T +

∑
i∈D

Si,

LOMS
n ≤ max

i∈D
Si, L

T−OMS
n ≤ T + max

i∈D
Si.

Corollary 1: BGP , T −BGP , OMS, T −OMS achieve
the T-SLA.

V. POLICY EVALUATION

Besides the theoretical analysis of the previous section, we
evaluate our policies based on extensive simulations, studying
practical considerations and overhead issues. More specifically
a) we demonstrate how statistical and system parameters affect
convergence speed, and b) we examine trade offs that aim to re-
duce communication and processing overhead. All simulations
were performed in a custom, discrete-event simulator written
in Java. The main simulation model is a controller used to
spread traffic from a set of d service domains to a cluster of
m servers. Our investigation is based on extensive simulations
that were performed but due to lack of space we present an
indicative set.

A. Effect of system and statistical parameters on convergence

In the first series of simulations, we present results for the
BGP policy. The effect of system and statistical parameters
is the same for OMS. Also, note that for all the simulations
presented, time refers to simulation time units and is a dimen-
sionless quantity. In that sense, time units can be considered
as seconds.

1) Statistical parameters effects: The statistical parameters
we studied concern the service process in the servers. We
performed extensive simulations in studying how the rate
of convergence depends on (a) the service rates, (b) the
service distribution variations, and, (c) the service probability
distribution itself. For the simulation scenario presented, d = 4
and pi objectives are defined as ~p = (10%, 20%, 30%, 40%).

The performance of the algorithm for all the domains can
be seen in Figure 3-a , where for all the domains µ = 1. As
we can see, the algorithm achieves the desired utilization.

In Figure 3-b, we present results where all the domains
have the same service rate, ranging from 0.1 to 100. In the
case where all the service domains have the same service time,
increasing service rates increases the convergence rate; more
rounds are carried out in the same time and convergence occurs
faster.

Figure 3-c is indicative of how the variance between
the service rates for any domain i affects performance. We
compare cases where the service rate distribution “helps” the
domain which needs more service, and cases where the service
rate distribution “helps” the service which requests less CPU
power. When for domains i, j, µi > µj then the service
time is less per request for domain i and if the target is
high, domain must participate in more rounds than in the case
when the target is low. In order to control the variance of the
service time distribution for every domain i we use the formula

 BGP

C
P

U
 U

ti
liz

at
io

n

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

Time

0 100 200 300 400

SD 1
SD 2
SD 3
SD 4

(a)

 Effect of Service Rate

C
P

U
 U

ti
liz

at
io

n
D

ev
ia

ti
o

n

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Time

0 50 100 150 200

0.1
1
10
100

0.1
1
10
100

(b)

 Effect of Service Variance

C
P

U
 U

ti
liz

at
io

n
D

ev
ia

ti
o

n

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Time

0 20 40 60 80 100

1+2*i
1+5*i
7-2*i
16-5*i

1+2*i
1+5*i
7-2*i
16-5*i

(c)

 Effect of Service Probability Distribution

C
P

U
 U

ti
liz

at
io

n
D

ev
ia

ti
o

n

0.2

0.4

0.6

0.8

1

1.2

0.2

0.4

0.6

0.8

1

1.2

Time

0 50 100 150 200 250 300

Exponential μ(1)
Pareto μ(1) - a(1.1)
Pareto μ(1) - a(1.2)
Pareto μ(1) - a(2)

Exponential μ(1)
Pareto μ(1) - a(1.1)
Pareto μ(1) - a(1.2)
Pareto μ(1) - a(2)

(d)

Fig. 3. Effect of statistical parameters. In the vertical axis of (b),(c) and (d),
d∑
i
|UBGP

i (t)− pi|, the total deviation from the goal vector is noted.

 Effect of Appliances number

C
P

U
 U

ti
liz

at
io

n
D

ev
ia

ti
o

n

0.5

1

1.5

2

0.5

1

1.5

2

Time

0 5 10 15 20

1
5
10
50

1
5
10
50

(a)

 Effect of Appliances number

N
um

b
er

 o
f

R
o

un
d

s

500

1,000

1,500

2,000

500

1,000

1,500

2,000

Time

0 20 40 60 80 100

1
5
10
50

(b)

 Effect of Domains number

C
P

U
 U

ti
liz

at
io

n
D

ev
ia

ti
o

n

0.5

1

1.5

2

0.5

1

1.5

2

Time

0 100 200 300 400 500

10
50
100
500

10
50
100
500

(c)

 Effect of Domains number

N
um

b
er

 o
f

R
o

un
d

s

10

20

30

40

50

60

10

20

30

40

50

60

Time

0 100 200 300 400 500
10
50
100
500

10
50
100
500

(d)

Fig. 4. Effect of system parameters. In the vertical axis of (a) and (c),
d∑
i
|UBGP

i (t)− pi|, the total deviation from the goal vector is noted.

µi = a+ b ∗ i, where the values of a and b can be seen in the
legend of the Figure 3-c.

Using a service probability distribution different from the
exponential (with the same average service time for all the
domains), results in a different convergence rate as we can
see in Figure 3-d. For the case of service time following
Exponential and Pareto distributions, the mean for all the
domains is equal to 1 and the shape parameter a of the Pareto
distribution is varied, to achieve different “tail” behavior. The
closer a is to 1, the heavier the tail, generating very long
service times. These appear as spikes in the figure and make
convergence harder.

2) System parameter effects: We study the impact of the
number of servers m and the number of service domains d
on the convergence rate. In Figure 4-a, we present simulations
for an environment where d = 4 and the number of servers
varies from 1 to 50. In the vertical axis the total deviation
from the goal vector is noted while we set the T-SLA to
be ~p = (10%, 20%, 30%, 40%) and all the domains have
exponential service times with µi = 1. Increasing the number
of servers leads to faster convergence and this effect can
be explained by the behavior shown in Figure 4-b: for any
given time, BGP completes more rounds when there are more
servers in the system and it has more chances of adjusting.
The number of domains also has a direct impact in the
form and rate of convergence, as we can see in Figure 4-c
where total deviation from the goal vector is noted in vertical
axis; increasing the number of domains results in slower
convergence. While increasing the number of domains a round
takes more time to complete, less rounds are executed in the

 T - Delayed Versions

C
o

nv
er

ge
nc

e
Ti

m
e

1.0k

2.0k

3.0k

4.0k

5.0k

T period

0 2 4 6 8

T-BGP
T-OMS

T-BGP
T-OMS

Fig. 5. T- Delayed versions.

same period of time (Figure 4-d) and thus the policy exhibits
slower convergence rates. The T-SLA for these simulations
specified p1 = 10% for one domain and equal pi values for
the rest.

B. Overhead and trading-off analysis

As we already discussed in subsection IV-B, one way to
reduce communication and processing overhead is to keep
the calculated weights constant for a fixed period of time
before the service pattern is updated. The T-Delayed versions
also converge but now this happens with a slower pace than
before. We note that the one domain per round strategy of
T − OMS is rather penalized in this scenario; T − BGP
utilizes the idea of the round and appears superior. This can be
seen in Figure 5, where a comparison of convergence speed is
presented between the two policies. The simulation scenario is
d = 4, target utilizations are ~p = (10%, 20%, 30%, 40%) and

E[Si] = 1s, the same for all the domains. The convergence
criterion was Uπi (t) = pi ± 0.05 for all domains i for at least
200 successive rounds. As we can observe, only for small
values of T, OMS is slightly superior than BGP . Note, that
there exists a value of period T̃ where T−OMS and T−BGP
experience similar convergence time and above this value
T − BGP offers faster convergence than the corresponding
T−OMS. In future work we investigate analytical expressions
on convergence speed and we will try to provide analytical
expressions of instant T̃ .

VI. RELATED WORK

In current commercial implementations, the assignment of
service domains to servers is done in a static fashion by an
administrator. The resource provisioning (T-SLA) problem has
been addressed by the authors of [3] and [4] in a different
context. In these works, the control used to achieve the targets
in Equation 3 was exercised directly on arrival rates to the
servers, not scheduling. For extensive work on scheduling
algorithms the reader is referred to [5].

Interesting work on the topic of server provisioning with
dynamic resource allocation in service networks is presented
in [7] or more recently in [6]; in the latter, the minimization
of the number of virtual servers allocated to the system is
examined, while in the former the authors aim to differentiate
services based on both their relative profitability and QoS
requirements. The performance metric in both cases is the
end-to-end delay. Utility maximization problems in server
operations is presented in [9], where the goal is to maximize
the time average value of the instantaneous utility subject to
network stability.

Moreover, related work in CPU power management poli-
cies for service applications can be found in [8] where the
authors propose a method for estimating CPU demand of ser-
vice requests based on linear regression between the observed
request throughput and resource utilization level. Finally, our
approach is closely related to the techniques of stochastic
approximation, like the ones developed in [10].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented scheduling policies for pro-
visioning the CPU resources in a server tier of a multitier
data center among competing service domains. The objective
of such provisioning is to guarantee to each domain a pre-
specified percentage of the CPU resource. We provided the
necessary mathematical framework and proofs of convergence
for a class of policies that does not require exact knowledge of
service time statistics and has adjustable communication and
computation overhead. Besides theoretical analysis, extended
simulations were performed. In order to address policy over-
head, we evaluated how periodic execution of control actions
can affect policy performance and speed of convergence.

Directions for future work include (a) theoretical analysis
of convergence rate for the class of bounded-round, fair
policies, (b) extension of the controller actions to include
interaction of the service and server tiers, and, (c) extensions
of the policies for SLAs outside the overload regime. A basic
assumption of our queueing model is saturated conditions,
meaning that there will always be available requests for every

domain. Extensions of BGP and OMS are possible in order
to make these algorithms operable when the assumption for
saturated arrivals is relaxed. Note, that if saturated arrivals
cannot be assumed, this implies that a domain can potentially
request less traffic than agreed on the SLA. This, requires an
alteration of the SLA description, such that the SLA is satisfied
when the minimum of pi or requested resources is achieved.

Acknowledgements

This work is financed by the European Union (European
Social Fund ESF) and Greek national funds through the
Operational Program ”Education and Lifelong Learning of
the National Strategic Reference Framework (NSRF) Research
Funding Program: Heracleitus II - Investing in knowledge
society through the European Social Fund.

REFERENCES

[1] E. Nitto, et al, “A journey to highly dynamic, self-adaptive service-based
applications” Journal,Automated Software Engineering, pp. 313-341, 3-
4, December 2008.

[2] L. Tassiulas, A. Ephremides, “Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multihop
radio networks”, IEEE Trans. on Automatic Control, 37(12), Dec. 1992.

[3] K. Katsalis, L. Tassiulas, Y. Viniotis, “Distributed Resource Allocation
Mechanism for SOA Service Level Agreements”, IFIP-NTMS, Paris, 7−
10 February 2011.

[4] M. Habib, et al, “A Service Differentiation Algorithm for Clusters of
Middleware Appliances”, ICSOFT, Sofia,Bulgaria, 26− 29 July 2009.

[5] J. Blazewicz, et al, “Handbook on Scheduling: From Theory to Appli-
cations”, ISBN-10: 3540280464, first Edition, 2007

[6] Lama, P.; Xiaobo Zhou;,“Efficient Server Provisioning with Control for
End-to-End Response Time Guarantee on Multitier Clusters”, Parallel
and Distributed Systems, IEEE Trans,vol.23, no.1, pp.78-86, Jan. 2012

[7] M. G. Kallitsis, et al, “Distributed and dynamic resource allocation for
delay sensitive network services,” IEEE GLOBECOM, pp. 1-6, Dec.
2008.

[8] Chun Zhang et al, “Leveraging service composition relationship to
improve cpu demand estimation in SOA environments,”, IEEE SCC, pp.
317-324 , Washington, DC, USA, 7-11 July 2008.

[9] Longbo Huang, Michael J. Neely, “Utility optimal scheduling in pro-
cessing networks”, Performance Evaluation, Vol. 68, Issue 11, 2011, p.
1002-1021

[10] Julius C.B. Leite, Dara M. Kusic, Daniel Moss et al, “Stochastic
approximation control of power and tardiness in a three-tier web-hosting
cluster”. Autonomic computing (ICAC ’10). ACM, New York, NY, USA,
41-50.

[11] Arregoces M. et al, “Data Center Fundamentals”, Cisco Press, 2004

