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Abstract—We study an 1-hop broadcast channel with two
receivers. Due to overhearing channels, the receivers have side
information which can be leveraged by interflow network coding
techniques to provide throughput increase. In this setup, we
consider two different control mechanisms, the deterministic
system, where the contents of the receivers’ buffers are announced
to the coding node via overhearing reports and the stochastic
system, where the coding node makes stochastic control decisions
based on statistics and the performance is improved via NACK
messages. We study the minimal evacuation times for the two
systems and obtain analytical expressions of the throughput region
for the deterministic and the code-constrained region for the
stochastic. We show that maximum performance is achieved by
simple XOR policies. For equal transmission rates r1 = r2, the two
regions are equal. If r1 6= r2, we showcase the tradeoff between
throughput and overhead.

I. INTRODUCTION

Interflow network coding (coding together information from
different flows) applied on multiple unicast flows has been
shown to outpeform the classical routing schemes of the
past. In 2006, Katti et al. demonstrated throughput benefits
of interflow coding on real wireless devices using simple
per-bit XOR operations. They designed and tested COPE,
the first experimental evidence of practical wireless network
coding, see [1], [2]. Apart from the classical two-way relay
model (where 2 packets from two flows are delivered in three
transmissions instead of four using XOR coding at the relay),
COPE also proposed opportunistic listening; the nodes store
opportunistically overheard packets in their buffers and then
use them to decode future transmissions. This process increases
throughput in cases of non-symmetric flows, as in Fig. 1.

Despite the warm reception from the research community,
wireless network coding has not yet penetrated real applica-
tions. Although COPE and many important followup works
(e.g. [3]–[6]) proposed distributed protocols which provide a
packet level abstraction of coding operations to the above
networking layers, there are still remaining issues which com-
plicate the operation of such protocols and thus decelerate their
actual deployment. One main concern, which is the focus of this
work, is how the coding node can be efficiently informed of the
content of the decoding buffers of the receivers.

The first approach, due to [1], is based on reporting over-
hearing events of all packets/receivers to all neighbors via an
ACKing mechanism. Even though the proposed scheme is com-
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Fig. 1. Wireless network coding using overhearing channels - a two receiver
case. Black lines represent links, dotted thick lines represent activated flows
and gray arrows represent broadcast transmissions. Node R employs interflow
network coding to improve the throughput achieved by the two flows.

pressing the information efficiently by sending coded reports
in batches, the amount of circulated information is immense
and there exist concerns about how timely these reports can
be, especially when the scheme is used with very high packet
rates. Another approach has been proposed by [1] (and studied
further in [7]), where the coding node operates with statistics
and feedback reports are used only when the receivers cannot
decode a coded packet. This reduces the number of reports
required but possibly the throughput performance as well,
since the coding node makes decisions oblivious to the actual
random overhearing events. An alternative approach is the
I2NC protocol, proposed in [8], which combines interflow with
intraflow coding to reduce the complexity of acknowledgment
messages at the expense of immediate decodability. In this
work, we focus on the two first approaches and compare their
performance in terms of maximum throughput and volume of
feedback messages.

Consider the example of Fig. 1. Two non-symmetric flows
are defined, f1 : s1 → 1 and f2 : s2 → 2. Both flows
use the intermediate node R as a forwarder, which employs
interflow network coding by XORing packets from the two
flows. The receivers 1 and 2 utilize the overhearing erasure
channels to obtain side information, i.e. packets destined to
the other receiver. For example, receiver 1 receives packets
destined to receiver 2, with probability p2, whenever the source
s2 attempts to upload them to R. We focus on the downlink
part which entails the complexity of the problem; node R must
make coding and scheduling decisions in order to achieve some
objectives, e.g. maximize throughput. In this context, we will
call deterministic the system where node R learns the content of
the decoding buffers of 1, 2 via explicit reports that follow each
overhearing event and stochastic the system where the decisions
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are made based on the probabilities of the overhearing channels
and feedback reports following each unsuccessful attempt. This
formulation is called 1-hop model.

A. Related work

Stability in networks with interflow network coding without
overhearing is studied in [3] and [9]–[12]. Also, in [13], [14]
the studies are extended to capture overhearing with reports,
which corresponds to the deterministic system. Note that in
these works, the code-constrained stability region is provided,
i.e. the stability region under the assumption that XOR coding
is used. The 1-hop model is also studied in [15] where the
information theoretic capacity is given in the case of overhear-
ing events provided as side information- a model equivalent to
the deterministic system. With the exception of [14], all these
works do not consider the stochastic system.

In [14], the stochastic system with feedback is studied under
the assumption that receivers are not allowed to store coded
packets and the code-constrained throughput region is provided
in parametric form. The obtained throughput region is strictly
smaller than that of the deterministic system. In this work,
we extend [14] by allowing the storage of coded packets. We
show, that if r1 = r2, then the stochastic system can achieve
the same throughput as the deterministic one by the use of
a simple XOR-based scheduling policy and feedback reports.
Thus, the number of reports can be reduced significantly in this
case without throughput losses.

Studies of the broadcast channel with erasures, i.e. see [16],
relate to our work. In these studies, the problem is different
since the side information for decoding is obtained from past
erased transmissions; however, the techniques used are similar.
In [17], the authors show that the capacity can be achieved
by XOR coding for the case of 2-4 receivers. A different
but related research topic is that of index coding; subsets of
information bits are known to subsets of the receivers and
we seek the transmission policy that minimizes the time to
complete reception by all receivers, [18], [19]. Our work differs
from index coding in the fact that the source has partial
knowledge of what information each receiver has. Also, for
the deterministic system, we extend the index coding problem
to variable rates r1, r2.

Previous work has shown that in practical wireless networks,
where the locations of the nodes are random, the vast majority
of interflow coding opportunities involve a small number of
nodes, [12], [20], [21]. This motivates the study of simple
schemes with a small number of receivers, which can be solved
efficiently. In this spirit, we provide optimal solutions that uti-
lize simple XOR operations, require minimal information about
system state, are oblivious to arrivals and can be embraced by
resource limited wireless devices.

B. Contribution

We study the case of one node broadcasting coded trans-
missions and two receivers having side information. We allow
the receivers to store any received or overheard packet (either
native or coded) and use it in the future for decoding purposes.
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Fig. 2. The system under consideration; packets from two unicast flows arrive
at the coding node R and are destined to two different receivers. Due to side
overhearing channels, a copy of the arriving packet, destined to one receiver,
also arrives at the other with a probability.

1) We give an outer bound for the throughput region of the
deterministic system assuming general coding (including
non-linear coding)-the equivalent information theoretic
capacity region is shown in [15]. We show that this region
can be achieved by simple XOR policies which operate
without knowledge about arrivals.

2) For the stochastic system, we give in closed-form the
code-constrained throughput region assuming the use of
XOR coding. We propose a simple evacuation coding
policy which achieves it. Interestingly, for the case of
equal rates r1 = r2, this region is identical to the
throughput region of the deterministic system.

3) We study performance tradeoffs between the two systems
for a range of system parameters comparing the through-
put efficiency and the feedback overhead.

II. SYSTEM MODEL

Consider a broadcast network with one transmitting node R
(coding node) and two receivers 1, 2. The time is slotted, where
slot t occupies the time interval [t, t+ 1). At the beginning of
each slot, packets arrive at R with destination either receiver 1
or receiver 2. Within a slot, a number of packets are transmitted
by R. We assume that all packets consist of L bits. The bits
are i.i.d. with uniform distribution.

Arrivals. Packets arrive with the following property: when-
ever a packet destined to 1 (2) arrives at R, a copy of it arrives
at 2 (1) with a probability p1 (p2). This probability corresponds
to random overhearing events which are independent from one
another. The packets arrive according to a stochastic arrival
process with rate λ1 and λ2 correspondingly, see Fig. 2. We
assume i.i.d. packet arrivals within each slot.

Storage. The coding node stores arriving packets in the input
queues (hereinafter queues) while the receivers store packets
useful for decoding in the decoding buffers (hereinafter buffers).
As will be explained shortly, packets are separated into classes
and are stored in queues corresponding to these classes. An
obvious initial classification relates to the destination receiver,
but we will expand the classification later. While the packets
are saved in the queues in their native form, the buffers might
contain packets in either native or coded form.

Transmissions. At the beginning of each slot t, R chooses a
control (=a “type” of packets) c and transmits r ∈ N such
packets. Controls are of two forms, ci or c1 ⊕ c2. Control
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ci refers to packets located in the queue ci, where the index
denotes the receiver i to which the packets are destined. Control
c1 ⊕ c2 refers to XOR coding of packets located to queues c1

and c2. We will relax the constraint of XOR coding in section
IV-A.

Rates. Receiver i receives correctly all transmissions if r is
less than or equal to ri, i = 1, 2. Reception here corresponds
to PHY layer operations, e.g. demodulation. For simplicity, we
further constrain the actions of the coding node as follows. We
let r ∈ {r1, r2}, and the coding node selects either ri packets
directed to receiver i or min{r1, r2} packets directed to both
receivers. This way, the maximum number of packets is always
transmitted in a given slot subject to correct reception at the
involved receivers. Whenever the packets in a queue are less
than the chosen r, dummy packets are used to fill in this number.
We assume that the broadcast channel is erasure-free and we
leave the study of erasures for future work.

XOR coding. The XOR coding refers to per bit modulo-
2 additions of two packets x1, x2 denoted by x1 ⊕ x2. The
decoding is straight-forward if both the XORed packet and one
of the native packets involved in the XOR combination are
known to the receiver; applying a XOR addition on x2 and
x1⊕x2 provides x1 for example. Whenever a received packet is
not intended for the receiver (e.g. x2 for receiver 1) or it cannot
be decoded (e.g. x1 ⊕ x2 when none of the native packets is
available) it is stored for future use.

Departures. We assume that whenever a packet is obtained
in native form by the intended receiver, the packet and all coded
functions of it depart the system. In the following, we consider
two different instances of the above problem.

A. Determistic system
Here we assume that the content of the buffers is announced

to the coding node via a separate channel. The state of the
system at time slot t is Sdet(t) = (k1, k2, n1, n2), where k1

(k2) is the number of packets destined to receiver 1 (2), and
n1 (n2) is the number of packets destined 1 (2) and overheard
by 2 (1). We call the latter, good packets due to their ability
to be efficiently combined. The rest of the packets are called
bad for consistency. Note, that since overhearing takes place
only upon arrival, the categorization of good/bad does not
change during the lifetime of a packet. Classifying the packets
according to which receiver are destined, and whether they are
good/bad, we use four queues to classify them upon arrival,
named g1, b1, g2, b2. The control set is then defined as

Cdet , {g1, b1, g2, b2, g1 ⊕ g2},

where, for example, control g1 denotes the transmission of r1

packets from queue g1. The control {g1⊕g2} is directed to both
receivers (sent at rate min{r1, r2}) and the controls {gi, bi}
are directed to receiver i (sent at rate ri), i = 1, 2. Note, that
we omit controls that apply XORs on bad packets. Although
this is a constrained control set, we will show that optimal
performance can be achieved using this set. A policy is a
mapping from system state at the beginning of slot t to a control
c ∈ Cdet, which corresponds to r ∈ {r1, r2} transmissions,
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Fig. 3. A snapshot of the stochastic system. The packets are classified
by the coding node as unknown (no knowledge of overhearing event), good
(overheard) or bad (not overheard). We showcase the example of Fig. 2 after
the control u1 ⊕ u2 is used with r = 2.

where r is determined by the chosen control. It is convenient
to denote with Cdet(t) ⊆ Cdet a subset of the control set with
the property that the member controls correspond to non-empty
queues. If for some t we have Cdet(t) = ∅, then clearly the
system queues are empty.

B. Stochastic system

The coding node estimates the overhearing events based on
probabilities p1, p2 and uses feedback to improve the estima-
tion. We assume a feedback mechanism that announces to the
coding node the inability of a receiver to decode a coded packet
using NACK messages. For a transmitted packet x1 ⊕ x2, the
mechanism is used by the coding node as follows; if no NACKs
are received, then both packets depart the system as described
above. If x1 is NACKed but x2 not, then the latter departs
the system and the coding node obtains the information that
receiver 2 has x1 and receiver 1 has x1⊕x2. In this case, x1 is
put in the g1 queue, while the coded packet is not stored since it
is a function of the departed packet. The symmetric case where
x2 is NACKed but x1 not, is obtained by exchanging 1 and 2.
Finally, if both packets are NACKed, then both receivers have
x1⊕x2 and both packets are stored in the corresponding queues
b1, b2. It should be noted that all packets in bad queues are
associated with the knowledge that a XOR function is stored
in the buffers. See Fig. 3, 2 for an example of operation.

Upon arrival, the packets are classified as unknown since
the coding node only possesses stochastic knowledge about the
corresponding overhearing events. For this reason, queue ui for
unknown packets is introduced and all arrivals enter the coding
node at these queues, see Fig. 3. The packets may leave this
queue when they depart the system or if moved to another
queue according to the above-described mechanism.

The system state is Sdet(t) = (k1, k2, n1, n2, m1,m2), where
ki is the total number of packets of flow i in the queues, ni
the number of packets in gi and mi the number of packets in
bi. We define the control set as:

Csto , {g1, b1, u1, g2, b2, u2, g1⊕g2, g1⊕u2, u1⊕g2, u1⊕u2}.

The set is again constrained to exclude XOR controls involv-
ing packets from the bad queues. This happens without loss of
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optimality, though a proof is omitted here due to lack of space.
Controls {gi, ui} are directed to receiver i (as before), while
the rest controls are directed to both receivers. The policies and
set Csto(t) are defined as in the deterministic case. We will refer
to controls {g1, b1, . . . } as single controls and to {g1⊕g2, . . . }
as XOR controls, denoting the corresponding sets with Cs, Cx.

III. STABILITY CONSIDERATIONS

Consider the set of queues at the coding node, denoted Q.
Denote the sum of backlogs of queues in Q under policy σ at
the end of time slot t as Xσ

i (t). As in [22], we say that the
system is stable if

lim
q→∞

lim sup
t→∞

Pr (Xσ
i (t) > q) = 0.

Note that the definition of stability does not include the buffers.
Due to the definition of departures, though, stability of queues
implies stability for the buffers.

Consider the set of all vectors λ = (λ1, λ2) for which
the system is stable under policy σ; the closure of this set
denoted by Λσ is called the stability region of the policy σ.
The region Λ , ∪σΛσ characterizes the system and is called
the throughput region. In case we constrain the allowable set
of codes (e.g. to XOR only) we will refer to the corresponding
region as the code-constraint throughput region, see [19].

We expect the code-constraint region of the stochastic system
to be a subset of the throughput region of the deterministic due
to the partial information available at the coding node and the
restriction to XORing.

A. Evacuation time and stability

In order to study the stability of the described model, we
consider a different operation of the system, which is based on
evacuating system snapshots. We assume a snapshot with k1

packets destined to receiver 1 and k2 destined to receiver 2,
where the packets have arrived following the rules explained
above regarding overhearing. The number of overheard packets
is random; denote by n1 , N1(ω) the number of packets des-
tined to receiver 1 and overheard by receiver 2 and n2 , N2(ω)
similarly. Then, the system operates as it would normally do
with the difference that no extra arrivals are introduced in the
system. An admissible evacuation policy π is a sequence of
eligible control actions at the end of which all packets have
departed from the system. Note, that each evacuation policy can
be mapped to an epoch-based policy σ(π), which is admissible
in the system with arrivals and evacuates all packets present in
the system at the beginning of each epoch using π, see [22].
Next, we follow the steps of [22].

Let Π be the set of all evacuation policies. We denote
with Tπ(k1, k2, n1, n2) the evacuation time of policy π ∈ Π,
which is the minimum number of slots required to empty the
system queues under policy π. We denote with T

π
(k1, k2) ,

E[Tπ(k1, k2, N1, N2)] the average evacuation time of this pol-
icy and with T

?
(k1, k2) , infπ∈Π{T

π
(k1, k2)} the minimum

average evacuation time over all the policies.

LEMMA 1 [SUBADDITIVITY AND LINEAR GROWTH]: The
function T

?
(k1, k2) is subadditive, is upper bounded by a linear

function and the following limit exists

T̂ (λ1, λ2) = lim
t→∞

T
?
(dtλ1e , dtλ2e)

t
.

Proof: In [22], Lemma 1 is shown under a general class
of policies, provided that these policies have certain Features
and under some Assumptions on System operation, all of which
hold trivially in our problem.

PROPOSITION 2 [THROUGHPUT REGION VIA EVACUATION
TIMES FROM [22]]: The throughput region of the system is the
set of rates (λ1, λ2) ≥ (0, 0) satisfying

T̂ (λ1, λ2) ≤ 1.

IV. ANALYSIS OF THE DETERMINISTIC SYSTEM

For the purposes of this section, we will allow arbitrary
coding functions (including non-linear coding) on any subset
of packets, relaxing the restriction of XORing only two packets
from different flows. This way, we provide a lower bound on
the minimal evacuation time T

?
(k1, k2) and correspondingly,

its linear growth. Then, we show that simple XOR-based online
policies, which operate agnostically to arrival rates, can be used
to evacuate the system with the same growth. This in turn
establishes the throughput region for the deterministic system,
which is given in a closed-form expression.

A. Lower bound on evacuation time under general coding

The development of the lower bound is based on a pre-
liminary result which we present next. Let X ,Y,M1,M2

be finite sets. Consider sequences Xl ∈ X , l = 1, . . . , k1

and Yl ∈ Y, l = 1, . . . , k2. Denote AK ,(A1, . . . , Ak). We
also consider two coding functions Φ1 : X k1 × Yk2 → M1,
Φ2 : X k1 × Yk2 → M2 and two decoding functions g1 :
M1 ×M2 × Yn2 → X k1 and g2 :M1 × Xn1 → Yk2 , where
0 ≤ ni ≤ ki, i = 1, 2. We impose error-free decoding:

CONDITION 1 [DECODING]: For any (Xk1 , Y k2)

1) g1

(
Φ1(Xk1 , Y k2),Φ2(Xk1 , Y k2), Y n2

)
= Xk1 .

2) g2

(
Φ1(Xk1 , Y k2), Xn1

)
= Y k2 .

Fix Y n2 and define the mapping Ψ : X k1 × Yk2−n2 →
M1 ×M2, where

Ψ
(
Xk1 , Zk2−n2

)
=
(
Ψ1

(
Xk1 , Zk2−n2

)
,Ψ2

(
Xk1 , Zk2−n2

))
,

Ψl

(
Xk1 , Zk2−n2

)
= Φl

(
Xk1 , Y n2 ||Zk2−n2

)
, l = 1, 2,

Y n2 ||Zk2−n2 is the concatenation of sequences Y n2 ,Zk2−n2 .
Similarly fix Xn1 and define the mapping Θ : X k1−n1 ×

Yk2 →M1 ×M2, with

Θl

(
Zk1−n1 , Y k2

)
= Φl

(
Xn1 ||Zk1−n1 , Y k2

)
, l = 1, 2.

We also define the mapping Φ : X k1 × Yk2 →M1 ×M2 as,

Φ
(
Xk1 , Y k2

)
=
(
Φ1

(
Xk1 , Y k2

)
,Φ2

(
Xk1 , Y k2

))
.

LEMMA 3: Under condition 1, for any fixed Y n2 (fixed Xn1 )
the mapping Ψ (Θ) is injective. Hence it holds,

|R(Ψ)| = |X |k1 |Y|k2−n2 , |R(Θ)| = |X |k1−n1 |Y|k2
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where R(Φ) denotes the range of a mapping Φ. Moreover, for
any fixed Xk1 , the mapping Φ̃1 : |Y|k2 → M1 defined by
Φ̃1

(
Y k2

)
= Φ1

(
Xk1 , Y k2

)
is injective, hence∣∣∣R(Φ̃1)
∣∣∣ = |Y|k2 (1)

Proof: To show that Ψ is injective, it suffices to show that
if Ψl

(
Xk1 , Zk2−n2

)
= Ψl

(
X̂k1 , Ẑk2−n2

)
, l = 1, 2,

then Xk1 = X̂k1 , and Zk2−n2 = Ẑk2−n2 . We write

Xk1= g1

(
Φ1(Xk1 , Y n2 ||Zk2−n2),Φ2(Xk1 , Y n2 ||Zk2−n2), Y n2

)
= g1

(
Ψ1(Xk1 , Zk2−n2),Ψ2(Xk1 , Zk2−n2), Y n2

)
= g1

(
Ψ1

(
X̂k1 , Ẑk2−n2

)
,Ψ2

(
X̂k1 , Ẑk2−n2

)
, Y n2

)
= g1

(
Φ1(X̂k1 , Y n2 ||Ẑk2−n2),Φ2(X̂k1 , Y n2 ||Ẑk2−n2), Y n2

)
= X̂k1

Y n2 ||Zk2−n2 = g2

(
Φ1(Xk1 , Y n2 ||Zk2−n2), Xn1

)
= g2

(
Ψ1(Xk1 , Zk2−n2), Xn1

)
= g2

(
Ψ1

(
X̂k1 , Ẑk2−n2

)
, Xn1

)
= g2

(
Ψ1

(
Xk1 , Ẑk2−n2

)
, Xn1

)
= g2

(
Φ1

(
Xk1 , Y n2 ||Ẑk2−n2

)
, Xn1

)
= Y n2 ||Ẑk2−n2

Hence, Zk2−n2 = Ẑk2−n2 . To prove Θ is injective, we argue
similarly starting from the decoding function g2. Finally, (1)
follows by the fact that for any Xk1 , if Φ1(Xk1 , Y k2) =
Φ1(Xk1 , Ŷ k2), then Y k2 = Ŷ k2 , which again follows from

g2

(
Φ1(Xk1 , Y k2), Xn1

)
= g2

(
Φ1(Xk1 , Ŷ k2), Xn1

)
.

COROLLARY 4: Assume that Xk1and Y k2 consist of indepen-
dent identically distributed random variables and are indepen-
dent of each other. Then the mappings Φ1, Φ2 are random
variables and it holds,

H (Φ1) ≥ k2H (Y ) (2)
H (Φ) ≥ max {k1H(X) + (k2 − n2)H (Y ) ,

(k1 − n1)H (X) + k2H (Y )} (3)

Proof: Since for fixed Xk1 the mapping Φ̃1 is injective

H
(
Φ1

∣∣Xk1 = xk1
)

= H
(

Φ̃1

∣∣Xk1 = xk1
)

= H
(
Y k2

)
= k2H(Y ).

Hence, H (Φ1) ≥ H
(
Φ1

∣∣Xk1
)

= k2H (Y ). Also
H (Φ) ≥ H (Φ |Y n2 ) = k1H(X) + (k2 − n2)H (Y )

H (Φ) ≥ H (Φ |Xn1 ) = (k1 − n1)H (X) + k2H (Y )

are derived in a similar fashion.
The interpretation of this formulation in the context of the

current paper is the following: X and Y are all possible L-bit
sequences that can be contained in a packet, |X | = |Y| = 2L.
The sequence Xk1 represents the k1 packets at the transmitter
that are destined to receiver 1, while the subsequence Xn1

represents the packets at the transmitter that are destined
for receiver 1 and have been overheard by receiver 2. The
interpretation of sequence Y k2 and its subsequence Y n2 is
similar. Since bit sequences are assumed i.i.d with uniform
distribution, we have H (X) = H (Y ) = L.

For the rest of the discussion we assume that r1 ≥ r2, hence
receiver 1 observes all slots, while receiver 2 observes only
slots at which packets are transmitted at rate r2. The set R(Φ1)
represents the values of the mapping which must be known to
receiver 2 so that together with Xn1 successful decoding is
effected at this receiver. Therefore, the values of R(Φ1) must
be transmitted during slots at which the rate is r2. We denote
by ξ2 the (random) number of packets transmitted during these
slots, and by ξ2 its average value. Hence, the average number
of bits transmitted in slots with rate r2 is ξ2L. Similarly, for
the set R(Φ) and receiver 1. We denote by ξ the (random)
number of slots used in the transmission of all the packets to
both receivers, and by ξ its average value.

In order for the receivers to obtain the values of the sets
R(Φ1), R(Φ) these values must be source-coded and trans-
ferred through the channel using packets of L bits. We use
uniquely decodable codes and hence the average number of bits
that need to be transmitted is bounded from below as follows.

To transfer the values of R(Φ1), using (2)

ξ̄2L ≥ H (Φ1) ≥ k2H(Y ) = k2L (4)

Similarly, to transfer the values of R(Φ), using (3)

ξ̄L ≥ H (Φ) ≥ max {H(Ψ), H(Θ)} .
≥ max {k1H(X) + (k2 − n2)H (Y ) ,

(k1 − n1)H (X) + k2H (Y )}
= Lmax {k1 + (k2 − n2) , (k1 − n1) + k2}
= L (k1 + k2 −min {n1, n2}) (5)

THEOREM 5 [LOWER BOUND WITH ARBITRARY CODING]:
The deterministic system satisfies under any π ∈ Π:

T
π
(k1, k2) ≥ T bdet(k1, k2),

where T bdet(k1, k2) , k1
r1

+ k2
r2
− E[min{N1,N2}]

max{r1,r2} .

Proof: Assume without loss of generality r1 ≥ r2. Also,
let ξ1 , ξ − ξ2 be the number of packets transmitted during
slots where rate r1 is used, so that only receiver 1 observes
them. For any policy π we have

Tπ(k1, k2, n1, n2) ≥
⌈
ξ2
r2

⌉
+

⌈
ξ1
r1

⌉
≥ ξ2
r2

+
ξ − ξ2
r1

.

Taking into account (4), (5) we then have

T̄π(k1, k2, n1, n2) ≥ ξ − ξ2

r1
+
ξ2

r2

≥ k1

r1
+
k2

r2
− E[min{N1, N2}]

r1
+
(
ξ̄s − k2

)( 1

r2
− 1

r1

)
≥ k1

r1
+
k2

r2
− E[min{N1, N2}]

r1

The result follows by using the same methodology for the case
of r2 > r1.
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B. A class of simple XOR-based policies

DEFINITION 1 [CLASS ΠDET]: At slot t the control is chosen
according to the following two steps:

1) If {g1 ⊕ g2} ∈ Cdet(t), choose control {g1 ⊕ g2}.
2) Else, choose any single control (each policy in the class

defines a different order).
When Cdet(t) = ∅, stop.

Let r , r1 if n1 ≥ n2 and r , r2, otherwise. Notice, that
since the policies in Πdet do not depend on the values of the
bits in the packets, their evacuation times are deterministic. By
enumerating the two above steps, we have

Tπ(k1, k2, n1, n2) ≤
⌈

min{n1, n2}
min{r1, r2}

⌉
+

+

⌈
max{n1, n2} −min{n1, n2}

r

⌉
+

⌈
k1 − n1

r1

⌉
+

⌈
k2 − n2

r2

⌉
≤ k1

r1
+
k2

r2
− min{n1, n2}

max{r1, r2}
+ 4, for all π ∈ Πdet. (6)

THEOREM 6 [THROUGHPUT REGION]: The throughput region
of the deterministic system is the area defined by (λ1, λ2) ≥
(0, 0), and the following inequality:

λ1

r1
+
λ2

r2
− min{p12λ1, p12λ2}

max{r1, r2}
≤ 1. (7)

Proof: Consider ki = dλite , i = 1, 2 packets to be
evacuated and note that the number of good packets per flow
are binomial random variables, denoted by N1(k1), N2(k2)
correspondingly. By the fact that status of arriving packets
(good, bad) is an i.i.d. process, we have,

lim
t→∞

E
[
Ni(dλite)

t

]
= piλi, (8)

and also, by the strong law of large numbers,

lim
t→∞

Ni(dλite , ω)/t = piλi w.p.1. (9)

Recall that T
?
(k1, k2) is the minimum average evacuation time

over all policies, hence smaller than T
π

. By Theorem 5

E
[
T bdet(k1, k2, N1, N2)

]
≤ T ∗(k1, k2) ≤ E[Tπ(k1, k2, N1, N2)] .

(10)
We calculate the limit of the upper bound of T

π
(k1, k2) using

the the RHS of (6)

lim
t→∞

E

 k1t
r1

+ k1t
r1
− min{N1(k1t,ω),N2(k2t,ω)}

max{r1,r2} + 4

t

 =

=
k1

r1
+
k2

r2
− lim
t→∞

E
[

min{N1(k1t, ω), N2(k2t, ω)}
tmax{r1, r2}

]
=
k1

r1
+
k2

r2
− min{p1k1, p2k2}

max{r1, r2}
, w.p.1,

where in the last step, we exchange the order of limit expec-
tation and min function due to uniform integrability which
follows from convergence in expectation (8) and almost ev-
erywhere convergence (9) of the involved sequences, see [23]

Th. 16.14. We can repeat the limit derivation for the case of
T bdet and derive the same limit, hence from (10) we conclude

T̂ (λ1, λ2) =
λ1

r1
+
λ2

r2
− min{p1λ1, p2λ2}

max{r1, r2}
and the result follows by invoking Proposition 2.

V. ANALYSIS OF THE STOCHASTIC SYSTEM

In this section, we study a set of evacuation policies Π for the
stochastic system, constrained to the use of XORs (i.e. general
coding is not considered) and derive the corresponding code-
constrained throughput region in closed-form.

A. Treating packets in queues b1, b2

We focus on a special control sequence. Following a control
u1 ⊕ u2, and two NACK messages from the receivers, the
corresponding transmitted packets x1, x2 are characterized as
bad and put in the corresponding bad queues. Assume, that in a
succeeding time slot, one of the two packets is transmitted using
a single control, say b1, directed to both receivers (i.e. at rate
r = min{r1, r2}). Evidently receiver 1 will obtain x1, which
departs the system. Since receiver 2 has previously obtained the
coded packet x1⊕x2 from the NACKed broadcast transmission,
receiver 2 can combine it with x1 and obtain x2. In a total of
two transmissions, both bad packets are obtained.

Due to the control set Csto, the packets in the bad queues
can only be evacuated by single controls. Since, for each bad
packet in the queue b1 there is a bad packet in queue b2 (the
one with which it was coded), for efficiency reasons we will
assume that they are always directed to both receivers. Finally,
since the evolution of the system state is not affected, we will
constrain the set of evacuation policies to those that choose
controls b1, b2 last.

B. Lower bound on the code-constrained growth rate

Let (f, s) = (1, 2) if r1 ≥ r2 and (f, s) = (2, 1) otherwise,
where f=fast and s=slow. Also, let (.)+ , max{., 0} and

Breq ,
λ1

r1
+
λ2

r2
− min(λ1p1, λ2p2)

pf

[
1

rf
− 1− pf

rs

]+

.

THEOREM 7 [LOWER BOUND ON THE GROWTH RATE]: For
the stochastic system, constrained to the use of XOR coding, it
holds

lim inf
t→∞

T
π

(dtλ1e , dtλ2e)
t

≥ Breq, for all π ∈ Π. (11)

The proof is in the Appendix.

C. An optimal evacuation policy

DEFINITION 2 [POLICY π∗]: Policy π∗ ∈ Π operates as
follows. If 1 − pf >

min(r1,r2)
max(r1,r2) is true, controls from Cs are

chosen in arbitrary order. Else, at slot t
• If {u1 ⊕ g2} ∈ Csto(t) or {u2 ⊕ g1} ∈ Csto(t), then select

the corresponding control
• elseif {u1 ⊕ u2} ∈ Csto(t) select this control
• else select any control from the set Cs. During this step,

controls b1 and b2 are used in the way explained in
subsection V-A.
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Fig. 4. Throughput regions of no network coding and deterministic system
and code-constrained regions of the stochastic system with or without storing
XORs (from [14]). Parameters: p1 = 0.7, p2 = 0.8, r2 = 3 and r1 = 3 (left),
r1 = 2 (right).

When Csto(t) = ∅ stop.

THEOREM 8 [ASYMPTOTIC OPTIMALITY OF POLICY π∗]:
For the stochastic system operating under policy π∗ we have

lim sup
t→∞

T
π∗

(dtλ1e , dtλ2e)
t

≤ Breq. (12)

The proof of Theorem 8 is in the Appendix. Combining (11)
and (12), we conclude T̂ ?(λ1, λ2) = Breq.

COROLLARY 9: The code-constrained region of the stochastic
system is the set of rates (λ1, λ2) ≥ (0, 0) satisfying

λ1

r1
+
λ2

r2
− min{λ1p1, λ2p2}

pf

[
1

rf
− 1− pf

rs

]+

≤ 1, (13)

where rs = min{r1, r2} and rf = max{r1, r2}. Whenever
the term in the brackets is negative, network coding is not
beneficial, and the maximum throughput is achieved without
coding. If r1 = r2, the terms cancel out and (13) equals (7),
therefore the code-constrained region of the stochastic system
and the throughput region of the deterministic are equal. In Fig.
4 we plot the regions for two different settings.

VI. NUMERICAL COMPARISON

In this section, we study the throughput-overhead tradeoff
between the deterministic and the stochastic systems.

For the deterministic system, assuming N1,N2 represent the
set of neighboring nodes of sources 1, 2, the average rate of
overhearing reports W det(λ1, λ2) is calculated as

W det(λ1, λ2) = λ1

∑
i∈N1−R

p1,i + λ2

∑
i∈N2−R

p2,i,

where 1 − p1,i is defined to be the erasure probability of
the link from source 1 to neighbor i and 1 − p2,i likewise.
For the stochastic system, note that one NACK message is
associated with each bad packet, since good packets are trans-
mitted without feedback messages. Thus, using policy π∗, the
corresponding rate is

W sto(λ1, λ2) = qXOR
1 (1− p1)λ1 + qXOR

2 (1− p2)λ2,

where qXOR
i is the fraction of bad packets of flow i that are

transmitted using XOR controls. If 1 − pf ≤ min(r1,r2)
max(r1,r2) , no

coding is performed and thus qXOR
1 = qXOR

2 = 0. Else, we can
find an upper bound, when (λ1, λ2) lies on the boundary of the
throughput region.

qXOR
1 =

{
1 if λ1p1 ≤ λ2p2
λ2p2
λ1p1

otherwise.

0.0 0.2 0.4 0.6 0.8 1.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

p1

λ?sto
λ?det r1 = 1

r1 = 2
r1 = 3

r1 = 4

r1 = 5

No network coding

0.0 0.2 0.4 0.6 0.8 1.0
0.80

0.85

0.90

0.95

1.00

p1

λ?sto
λ?det

p2 = 0.6

p2 = 0.7

p2 = 0.8

p2 = 0.9

p2 = 1

No network coding

Fig. 5. Throughput efficiency varying p1. Parametric plots vs r1 (left) and
vs p2 (right). Default parameters: λ1 = λ2, p2 = 0.9, r1 = 2, r2 = 3,
α = 1. Blue lines refer to no network coding comparative performance.
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Fig. 6. Worst-case feedback overhead varying p1. Parametric plots vs r1
(left) and vs p2 (right). Default parameters: λ1 = λ2, p2 = 0.9, r1 = 2,
r2 = 3.

and similarly for qXOR
2 by exchanging 1 and 2. There are four

reasons identified why the stochastic system is more efficient
in terms of the number of feedback messages (i.e. overhead).
(i) In the stochastic system NACKs can be used, while

in the deterministic ACKs are necessitated. This makes
significant difference if the overhearing probabilities p1, p2

are close to 1, as is the case where we expect higher
throughput benefits.

(ii) If λ1p1 6= λ2p2, some of the bad packets are transmitted
natively, thus qXOR

i < 1 for some i.
(iii) When the source nodes have multiple neighbors, reports

from neighbors that are not useful to the coding node are
avoided in the stochastic system.

(iv) If (λ1, λ2) is in the interior of the region without coding,
then the overhead for the stochastic is very small.

In what follows, we study the example of Fig. 1 where N1 =
{R, 2} and N2 = {R, 1}, in which case the best performance of
the deterministic system is obtained with respect to (iii) above.
Also, we calculate the worst case performance for the stochastic
as regards (iv).

In Fig. 5, 6, we present performance plots for throughput effi-
ciencyλ

?
sto
λ?det

defined as the ratio of the maximum sum throughput
λ?1(α) + λ?2(α) for the two systems and worst-case feedback
overhead W sto

W det defined as the ratio of average messaging rate
calculated on the boundary of the stochastic system region.
In Fig. 5. we observe that the throughput drops significantly
when pf is small, i.e. when the fast flow has weak overhearing
channel (see the case for r1 = 5 in the left). In all other
cases, the stochastic system sacrifices only a small fraction
of the throughput (stays always above 95%). In Fig. 6, the
corresponding gain in overhead is shown. In the left plot, where
p2 = 0.9, we see that the stochastic system requires at most
50% of the messages used in the deterministic one (if r1 = 5),
while, independently of rate, this figure becomes as small as 5%
if the probabilities are both high (e.g. for p1 = p2 = 0.9), which
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is the most practical case. In the right plot we verify that the
stochastic system is not a good option when both probabilities
have middle values.

VII. CONCLUSION

In the problem of reporting overhearing events in wire-
less network coding, we study the deterministic system and
the stochastic one. We derive analytical expressions for the
throughput region of the first and the code-constraint region of
the second and we show that the two are equal when r1 = r2.
When r1 6= r2, we analyze the throughput-overhead tradeoff
and conclude that the stochastic system is a very efficient
approach when the overhearing probabilities are sufficiently
high. Alongside with the theoretical results, we propose simple
and efficient evacuation policies which can be used in practice
to achieve optimal throughput for the case of two receivers or
good performance for more than two receivers.

APPENDIX

Proof of Theorem 7: We assume that the packets are
served from the queues in a FCFS manner, since all packets in
a given queue are statistically equivalent and thus reordering
them does not change the expected outcome.

We partition the set of policies Π to three sets, the subset of
policies using only single controls Πsin, the subset of policies
using always XOR controls if Cx ∩Csto(t) 6= ∅, called Πxor and
the rest Πmix. We immediately get

T
π
(k1, k2) ≥ k1

r1
+
k2

r2
, for all π ∈ Πsin. (14)

Next we will find a bound for policies in Πxor and ultimately
we will show that the policies in Πmix are outperformed (in
asymptotic sense) by those in Πsin ∪Πxor.

Let Nmin , min{N1, N2} and recall (f, s) = (1, 2) if r1 ≥
r2 and (f, s) = (2, 1) otherwise. Observe that the following
hold under any policy in Πxor:

1) While XOR controls are still available (i.e. Cx∩Csto(t) 6=
∅), a good packet departs only if coded with another good
packet independently of the XOR control used.

2) At the end of the slot that the packets from one flow are
all evacuated for the first time, it holds: exactly Nmin

good packets of both flows have departed.
We make the following helpful conventions:
1) In case of a {u1⊕u2} control involving two bad packets

followed by a single control of one of the two bad packets
(the combination evacuates both packets), we assign one
evacuated packet to each control.

2) Then, all XOR controls evacuate exactly one packet with
the exception of the control {g1 ⊕ g2}, which evacuates
two packets. We make the convention that the first Nmin

good packets of the fast flow take up zero transmissions
(the corresponding transmissions are counted for the first
Nmin good packets of the slow flow).

Let J(i) − 1, i = 0, 1 be the number of packets in front of
the Nmin + i-th good packet in the unknown queue of the fast

flow at time 0. Using the law of iterative expectations we get
E[J(0)] = E[Nmin] /pf and E[J(1)] = (E[Nmin] + 1)/pf.

All packets of the slow flow plus the bad packets of fast
flow of at least up to J(0) are evacuated in slots of rs packets
requiring one transmission each. Then the remaining kf−J(0)
packets of the fast flow are evacuated in slots of rf packets.
Thus, for any π ∈ ΠXOR

T
π ≥ E

[⌈
ks + J(0)−Nmin

rs

⌉]
+ E

[⌈
kf − J(0)

rf

⌉]
(15)

≥ E
[
ks + J(0)−Nmin

rs

]
+ E

[
kf − J(0)

rf

]
=
ks

rs
+

(1− pf)E[Nmin]

pfrs
+
kf

rf
− E[Nmin]

pfrf

=
k1

r1
+
k2

r2
− E[Nmin]

pf

[
1

max{r1, r2}
− 1− pf

min{r1, r2}

]
,

which combined with (14) yields

T
π
(k1, k2) ≥ k1

r1
+
k2

r2
− E[Nmin]

pf

[
1

rf
− 1− pf

rs

]+

,

for all π ∈ Πsin ∪ Πxor. Using limt→∞
E[Nmin]

t =
min{k1p1, k2p2} found above, we conclude that

lim inf
t→∞

T
π
(dtλ1e , dtλ2e)

t
≥ Breq, π ∈ Πsin ∪Πxor,

where Breq is the requested limit. Next, we consider set Πmix.
Pick a policy π ∈ Πmix. Let Ls(ks, kf , ω), Lf (ks, kf , ω) be

random variables denoting the number of packets that were
evacuated with controls {gs}, {us} and {gf}, {uf} respec-
tively. We have li , E[Li(ks, kf , ω)] and 0 ≤ li ≤ ki, for
i ∈ {s, f}.

Let Ms(ks, kf , ω),Mf (ks, kf , ω) be the number of good
packets that were evacuated with the above controls in the fast
and slow flow respectively. Furthermore, let Hi(ks, kf , ω) be
the number of good packets evacuated by controls {gi}. By the
law of large numbers we have w.p.1:

lim
t→∞

Mi(kst, kf t, ω)

t
= E[Hi] + pi(E[Li]− E[Hi]) ≥ pili.

(16)
All ks packets and the kf − Lf packets of the fast flow

are evacuated with rate rs. Therefore, the expected number of
timeslots needed to evacuate these packets is:

T 1 ≥ E
[
ks
rs

+
kf − Lf
rs

− min(Ns −Ms, Nf −Mf )

rs

]
=
ks
rs

+
kf − lf
rs

− E[min(Ns −Ms, Nf −Mf )]

rs
, (17)

where we have subtracted the time corresponding to XORs
between good packets. Also, the inequality is due to the
assumption that no dummy packets were used. The rest Lf
packets are evacuated with rate rf thus:

T 2 ≥ E
[⌈
Lf
rf

⌉]
≥ lf
rf
. (18)
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Therefore, using (17) and (18), we have:

T
π
(k1, k2) = T 1 + T 2 ≥

ks
rs

+
kf
rs
− lf

(
1

rs
− 1

rf

)
− E[min(Ns −Ms, Nf −Mf )]

rs
(19)

Define Bmix , lim inft→∞
T
π

(dtk1e,dtk2e)
t , π ∈ Πmix.

Taking the limit in RHS of (19), using uniform integrability
of the considered random sequences, we get w.p.1:

Bmix
(16)

≥ ks
rs

+
kf
rs
− lf

(
1

rs
− 1

rf

)
− min (ps(ks − ls), pf (kf − lf ))

rs
. (20)

Next we show that Bmix ≥ Breq. Define the conditions:

c1 ≡ psks ≥ pfkf c2 ≡ ps(ks − ls) ≥ pf (kf − lf )

Using 0 ≤ li ≤ ki, i ∈ {s, f}, for pf > rs
rf

we have

Bmix −Breq ={
(kf − lf )(

pf
rs
− 1

rf
) , c2

pf (kf−lf )−ps(ks−ls)
rs

+ (kf − lf )(
pf
rs
− 1

rf
) , c2,

while for pf ≤ rs
rf

Bmix −Breq =

lf ( 1
rf
− pf

rs
) , c1 and c2

pf (kf−lf )−ps(ks−ls)
rs

+ lf ( 1
rf
− pf

rs
) , c1 and c2

psks+pf lf−pfkf
pf

( 1
rf
− pf

rs
) , c1 and c2

pf (kf−lf )−ps(ks−ls)
pf

( 1
rs
− 1

rf
)

+psls
pf

( 1
rf
− pf

rs
) , c1 and c2

All cases can be verified to be nonnegative.
Proof of Theorem 8: We follow the steps of the proof of

Theorem 7 closely. First, note that if 1 − pf >
min(r1,r2)
max(r1,r2) is

true, then π∗ chooses only single controls and we quickly get

T̂π
∗
(λ1, λ2) =

λ1

r1
+
λ2

r2
.

If on the other hand the condition is false, then we have π∗ ∈
ΠXOR. The difference from the proof of Theorem 7 is how
packets between J(0) and J(1) are treated.

T
π∗

(k1, k2) ≤ E
[⌈
ks + J(1)−Nmin

rs

⌉]
+ E

[⌈
kf − J(0)

rf

⌉]
≤ E

[
ks + J(1)−Nmin

rs

]
+ E

[
kf − J(0)

rf

]
+ 2

=
ks

rs
+

(1− pf)E[Nmin]

pfrs
+

1

pfrs
+
kf

rf
− E[Nmin]

pfrf
+ 2

=
k1

r1
+
k2

r2
− E[Nmin]

pf

[
1

max{r1, r2}
− 1− pf

min{r1, r2}

]
+2 +

1

pf min{r1, r2}
.

Taking the lim sup completes the proof.
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