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Abstract—We study the problem of scheduling transmissions
of packets belonging to several flows traversing a given node
while making local encoding decisions. Practical wireless network
coding solutions rely on knowledge of key knowledge which is
obtained at the transmitter/scheduler either by acknowledgments
or statistically. In the latter case, the knowledge of overhearing
events for each packet improves progressively with feedback from
the transmissions. We propose a virtual network mechanism in
order to characterize the throughput region of such a system for
the case where we allow only pairwise XORing. We also provide
the policy which achieves the throughput region.

I. INTRODUCTION

The strength of local XOR operations lies on the simplicity
of the decoding functionality. Given that N−1 out of N native
packets are known, a destination receiver can apply the XOR
operation on the encoded packet to obtain the N th packet.
Despite the fact that the throughput gain from this method
varies greatly with the topology, the aggregation of the effect
throughout all network, along with the ability to implement the
local encoding operations in a transparent way to the rest of
the network layer stack, is what makes wireless NC important
for practical implementations.

In order to increase the efficiency of the wireless NC
scheme, COPE [1] proposes opportunistic listening, see Fig
1-a. This extra feature enables encoding of packets belonging
to non-symmetric flows (two flows are called symmetric
when one’s source is the other’s destination and vice versa)
and thus extends the throughput benefits to wider topolo-
gies and flow scenarios. Collecting the required overhearing
state information at the encoding node is not a trivial task
though. The first approach in [1] was to deal with this issue
by explicitly acknowledging all overheard packets, a policy
reported by the authors to be sluggish and costly as the channel
rate and number of neighbors increases. As an alternative
lightweight approach, obtaining statistical information about
the overhearing events was proposed. This comes of course
at a loss of throughput, the so-called regret region where the
scheduler regrets not having deterministic state information.
In this paper we are interested in quantifying this loss, as well
as propose an algorithm that stabilizes the network whenever
the arrival conditions make it stabilizable.

Apart from [1], there exist other practical approaches that
try to enable beyond-COPE practices in real systems using
local NC, like CLONE [2] and ER [3]. The authors in [4]
propose a simple practical scheme, XOR-SYM which allows
XOR coding of symmetric sessions only and disregards oppor-
tunistic listening. Similar to [5] and [6], [4] considers dynamic
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Fig. 1. Opportunistic listening; when Alice uploads her packet destined to
Bob, Chloe overhears the transmission and stores the packet as a key. Later,
the relay node may mix the flows fAB and fBC successfully. Bob decodes
due to ownership and Chloe due to overhearing.

strategies that do not require arrival rates as input. However,
all these approaches assume that the scheduler/encoder (or the
entity that makes the transmission decisions) has deterministic
knowledge of what information each destination has. Our work
builds on top of [1] and [4] addressing the problem of making
encoding decisions based solely on statistical information
about the overhearing state while being agnostic to arrival
rates. Other approaches that consider multihop scheduling and
NC problem and invoke dynamic backpressure algorithms
can be found in [5], [6]. The on-line system is robust to
dynamics because it reacts to present circumstances using
the state of the queues. The difference in our work, lies on
the fact that contrary to previous work, we do not assume
complete knowledge for the system. Instead, we assume that
the scheduler possesses only statistical information about the
overhearing events, i.e. which destination holds which keys.

Scheduling in systems with uncertainty and feedback is a
topic of recent interest, [7], [8]. In previous works regarding
scheduling in systems with uncertainty and feedback, it is
stressed that in the general case, such problems are well
modeled by Markov decision processes which however are
often intractable to solve. In our work, We make a connection
between scheduling problems with feedback and the control
theory of [9] which results in feasible algorithms for solving
such problems optimally.

Driven by the applicative nature of this approach, we
focus on wireless network coding and study the problem
of scheduling packets and making encoding decisions jointly
relying only on statistical overhearing information. We make
a few assumptions similar to prior practical NC schemes that
affect the throughput region:
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Fig. 2. Overview of our scheme; We study scheduling in the downlink but
consider also the overhearing events that take place in the uplink.

1) Use XORs only for combining packets.
2) Terminals are not allowed to forward encoded packets

(local NC), i.e. they must decode immediately the packet
and then encode it again if appropriate at the next hop.

3) Terminals are not allowed to store encoded packets for
future use.

4) The downlink does not have erasures.
5) We consider singlehop downlink only.

Assumptions 1-2 are clearly justified for practical NC imple-
mentations. We plan to relax assumptions 3-5 in future work.
In this paper we make the following contribution:
• We propose a virtual network technique which catego-

rizes the packets based on the belief of the scheduler
about which receiver has which keys.

• Using this virtual network, we characterize the throughput
region of the system in the case of F flows and allowing
for pairwise encoding (i.e. encoding up to two packets).

• We also provide the throughput optimal policy for this
case.

II. PROBLEM FORMULATION

We assume the existence of 2–hop flows traversing a central
node and we write i ∈ F = {1, 2, . . . , F} such that i : σi →
R→ δi where σi denotes the source node of flow i, δi denotes
its destination node and R is the central node called the relay.
The relay maintains a queue for each flow, call it ni for flow
i and let xi be its corresponding backlog. See Fig. 1-b for a
visual example.

In the uplink phase, the flow sources transmit native
packets towards the relay at rates rup

i . We denote the packets
of flow i arriving at the relay with P ik, where k = 1, 2, . . .
orders the packets based on arrival time (we may omit the
subscript k when we speak of an arbitrary packet). Each
arriving packet P ik is associated with an overhearing state
vector sik that characterizes the destinations having overheard
this packet. sik is a binary vector taking values in S = {0, 1}F
with sik(j) = 1 indicating that node δj (the destination of flow
j) has (by overhearing or ownership) the packet P ik in its buffer
and sik(j) = 0 indicating the complement. We assume that sik
is random and the randomness is stirred by channel fading,
mobility or spatially differentiated collisions. The relay obtains
statistical information about the overhearing events through

a mechanism that operates independently from the scheduler
and at a larger time-scale. Thus, the relay initially knows the
probability of the event si(j) = 1 denoted as qij .

In the downlink phase, the relay may select a set of
packets P chosen from different flows, encode them in a single
packet and transmit the encoded packet at the minimum rate
mini{rdown

i } where the minimization is over the set of flows to
which the packets in P belong. In this paper we limit ourselves
to the case where |P| ≤ 2.

In the feedback phase, each intended destination δi at-
tempts to decode the encoded packet and obtain the corre-
sponding P ik, and in case of success returns an acknowledg-
ment message (ACK). Once the ACK is received, the relay
removes P ik from queue ni which is now considered served. In
case of an encoded packet, we have four distinct cases which
convey complete feedback information to the relay about the
decoding of the receivers as well as the overhearing events of
the transmitted packets which were not decoded successfully.
Say we transmit P ik1 ⊕ P

j
k2

, we have the following cases:
1) Both packets are ACKed in which case they both leave

the system.
2) Packet P ik1 is ACKed and packet P jk2 is not ACKed.

In this case, P ik1 leaves the system and P jk2 stays in
the system while the relay learns that δi has P jk2 (i.e. it
learns that sjk2(i) = 1) and it may use this information
in the future.

3) Packet P ik1 is not ACKed and packet P jk2 is ACKed. By
symmetry, P ik1 stays in the system and the relay learns
that δj has P ik1 and P jk2 leaves the system.

4) Both packets are not ACKed in which case they both
stay in the system while the relay learns that δj does
not have P ik1 and δi does not have P jk2 .

The above described feedback mechanism is the typical
handshaking procedure used in IEEE 802.11 networks and
thus does not incur the same problems as the one used for
acknowledging overhearing events. The acknowledgment of
overhearing delays the encoding decisions while the acknowl-
edgment of decoding takes place in a lower layer and does
not hinder the relay operation.

Utilizing feedback information, the relay may improve the
state knowledge for a packet each time a decoding failure
occurs. This implies that the expected service rate obtained
by serving a given queue is not constant, a fact that gives
opportunities for performance improvements but complicates
the scheduling decisions. Below, we motivate further our work.

A. Encoding decision motivation

Consider the simple network of Figure 3 where two flows
exist, A→R→C and B→R→D. D overhears A with proba-
bility qAD and C overhears B with probability qBC and let
qAD = 1, qBC = q, hence after transmission of an encoded
packet PAC⊕PBD, destination D always decodes packet PBD
while destination C may or may not decode packet PAC .
Consider the downlink rates rdown

C
.
= r2 and rdown

D
.
= r1

and the uplink rates rup
A = rup

B
.
= r1, and assume equal
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Fig. 3. An example network with two flows, A→R→C and B→R→D. D
overhears A with probability qAD and C overhears B with probability qBC.

arrival rates λ1 = λ2 = λ . Under strategy 1: “Transmit
only native packets” the maximum λ achieved is 2r1r2

3r2+r1
while

under strategy 2 “Transmit the encoded packet PAC ⊕ PBD
and retransmit as native all undecoded PAC packets” it is

2r1r2 min{r1,r2}
2r2 min{r1,r2}+r1r2+(1−q)r1 min{r1,r2} . By setting these two
equal, the threshold qthr is obtained, such that for q ≥ qthr
NC is beneficial. Solving, we get

qthr =

{
0 r1 ≤ r2
r1−r2
r1

r1 > r2,

indicating that the strategy “encode as many packets as possi-
ble” used in [1] (where equal rates are assumed) is not optimal
when r1 > r2. Also, a fixed threshold policy is bound to fail in
a variable rate scenario. The phenomenon becomes non-trivial
to visualize and solve if one considers several flows with some
of them having common sources or destinations.

B. Scheduling with feedback motivation

To see the impact of feedback, consider the cross topology
of Figure 3 with qAD + qBC ≥ 1 and qAD < 1, qBC < 1 and
r1 = r2. Assume the use of a reasonable scheduling policy
which selects the packet PAC ⊕ PBD iff qAD + qBC ≥ 1,
which corresponds to decoding of at least one packet on the
average and otherwise it selects the transmission of a native
packet. Now assume that we only have two packets to send,
one for each flow, and it happened that these packets were
both not overheard at uplink time. The scheduler, oblivious
of this unhappy occasion, will encode the two packets (since
qAD + qBC ≥ 1) and transmit the coded packet. In this
case no ACK will be received since it is impossible for both
destinations to decode. A scheduler that disregards feedback
information will keep on sending the encoded combination
of the same packets and the system will never escape the
deadlock. Note, that we may let the above packets mix in
the queues with other packets and thus reduce the probability
of a deadlock. However, the throughput will decrease in any
case. The reason this happens is because the scheduler actually
has in its possession new information which is not taken
into account in future scheduling decisions. Indeed, once no
ACK messages were received, the scheduler can deduce the
information that none of the two packets is overheard. Then it
should append this information to the particular packets and
treat them differently.

III. PROBLEM FORMULATION

Consider the downlink of a network with F flows and F
corresponding queues, similar to the one in Figure 2. Let
τ = 1, 2, . . . be time instances at which the relay is ready
to transmit, also called decision slots. We assume a random
process Ai (τ), with E[Ai (τ)] = λi, of packets of flow i
arriving at the corresponding queue at the relay node along
with a randomly chosen state vector sik for each such packet.

At each decision slot, the scheduler located at the relay
chooses one control I from a set of controls I. Each control
consists of activating either a single queue, or a pair of queues.
A control having only one queue activated corresponds to
a native packet transmission. A control with two activated
queues corresponds to the transmission of the XOR of two
packets. Although the chosen control dictates which packets
are transmitted, the service (successful transmission) of a
packet in a queue is determined also by the vector sik which
is uncontrollable. We use the definitions of queue network
stability from [9].

Definition 1 (Queue stability): The queue ni of flow i is
called stable iff

lim sup
t→∞

1

t

t−1∑
τ=0

E
[
xi(τ)

]
<∞.

Definition 2 (Network stability): The network is stable iff
all queues are stable.

We seek to find a policy π which selects an appropriate
control at each decision slot such that the downlink of the
network is stabilized. The stability region of a policy π, Λπ is
the closure of the set of arrival rates for which the network is
stable when π is in use. The throughput region Λ is the closure
of the set of all arrival vectors λλλ = {λi} stabilizable by any
policy. A control policy π∗ is called throughput optimal if its
stability region is Λ, see [9], [10] for implications of these
definitions.

IV. THE VIRTUAL NETWORK MECHANISM

A. Description of the virtual network for two flows

We begin by illustrating the virtual network mechanism for
the case of two flows (F = 2), thus the allowable controls are
either to schedule a native packet from one of the two flows,
or the XOR combination of the pair. A description for F > 2
can be found in the following subsection.

We will use the notation i, ī with 1̄
.
= 2 and 2̄

.
= 1.

Any particular packet P ik of flow i can be categorized by
the scheduler according to the state estimation of the event
1ī{P ik}: “the destination of flow ī possesses P ik” as follows:
• Unknown state (u): In this case the scheduler does not

know 1ī{P ik} deterministically. It possesses, nevertheless,
the statistical information E

[
1ī{P ik}

] .
= qīi.

• Good state (g): In this case the scheduler knows that
1ī{P ik} = 1.

• Bad state (b ): In this case the scheduler knows that
1ī{P ik}=0.

In order to group packets with the same properties together,
we define for each flow i a directional subnetwork Gi =
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Fig. 4. The virtual network for the case of 2 flows consists of two
subnetworks, one for each flow.

(Ni, Ei) having one node for each possible overhearing state
and one for the destination. We write Ni = {niu, nig, nib, nid},
i = 1, 2 for the virtual node set. In order to capture the possible
state transitions, we define the virtual link set to consist of
the ordered pairs Ei = {eiud, e

i
gd, e

i
bd, e

i
ug, e

i
ub, e

i
gg, e

i
bb}, with

eikm
.
= (nik, n

i
m) and i = 1, 2. The virtual network is the

union of the two subnetworks for i = 1, 2, see Fig. 4.
We associate each node of the virtual network with a queue

backlog (i.e. node/queue niu has a backlog xiu). The packets of
flow i enter the virtual network at the node niu, they are routed
inside the network and eventually leave the system when they
reach node nid -thus the destination node queue is always
empty. At each time slot the scheduler selects a control which
corresponds to activating either a) one node from the virtual
network e.g. I = {n1

b} or b) two nodes from two different
subnetworks, excluding destination nodes, e.g. I = {n1

u, n
2
g}.

Once a control is taken, the first packet in each selected node
(head-of-line, HOL, packet) is transmitted. The node to which
a packet is transferred after a transmission is random and
its probability law depends on the chosen control. While the
scheduler knows the probability law, it does not know the
actual destination - unless the probability of transition to a
particular destination is 1. To reflect this, each link (k,m) of
subnetwork Gi is associated with a probability weight wikm(I)
that depends on the taken control (sometimes and if there is
no possibility for confusion we may omit superscript i for
simplicity). For any given control I and any node k we have∑
m∈Nk wkm(I) = 1 where N k is the set of neighbors of k.

Next we describe all possible transitions of a packet of
flow 1 when the control I = {n1

u , n
2
u} is taken. We write

w1
ud to represent w1

(n1
u ,n

1
d )

. To determine the transitions of the
packet of flow 1, we check the state of the packet of flow
2 which in this case it is unknown. We can calculate the
probability of correct decoding for destination δ1, which is
q21. If the decoding fails (it happens with probability 1−q21),
then the scheduler will learn the state of the packet of flow
1, based on the received feedback from the two destinations.
It can be the good state with probability q12 (thus moves to
the node n1

g with probability q12(1 − q21)) or the bad state
with probability 1− q12 (in which case it moves to the node
n1

b with probability (1 − q12)(1 − q21)). Thus for the chosen
control we get w1

ud(I) = q21, w1
ug(I) = q12(1 − q21) and

w1
ub(I) = (1 − q12)(1 − q21). Similarly we develop the link

weights for subnetwork G2 by exchanging 1 and 2.
If the scheduler selects the control I = {n1

u , n
2
g} then the

packet of flow 1 will definitely leave the system. Thus now
we have w1

ud(I) = 1 and the rest weights are zero. Instead
if the scheduler selects the control I = {n1

u , n
2
b}, we obtain

w1
ud(I) = 0, w1

ug(I) = q12 and w1
ub(I) = 1− q12. Also, given

the controls {n1
g , n

2
u} or {n1

b , n
2
u}, note that the packet of flow

1 will be either sent to destination or stay at the same node
since the packet state is known to the scheduler and cannot
change. The weights of the subnetwork G1 for all controls that
activate pairs of queues are given in the table I.

1) Virtual network for F flows and pairwise XOR: The
extension of the virtual network mechanism to the case of
F flows using pairwise XOR is natural due to the complete
feedback information provided. Each packet state is now
characterized by the scheduler knowledge about the state
vector that contains information about packet knowledge in
all F − 1 receivers. Thus, instead of having three states as
before, now we have 3F−1 states. Correspondingly, each of
the F independently created subnetworks will have 3F−1 + 1
nodes, one for each state and one for the destination. We
use the generalized notation for the nodes nic, where i ∈ F
indicates the flow and c is a ternary state vector taking values
in {u, g, b}F with c(i) = g by convention (in the previous
subsection and Figures 4, 5 we have chosen to omit this ele-
ment for presentation simplicity). See Figure 5 for an example
with F = 3. The routing of packets in this network follows
exactly the same rules as in the 2–flows case. Specifically,
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Fig. 5. The virtual subnetwork of flow 1 for the case of 3 flows. the gray
arrows connect all nodes to the destination.

when combining two packets, say belonging to flow i and
j 6= i, the routing is determined by the elements cj(i) and
ci(j) correspondingly and by the overhearing probabilities qji
and qij . Also, in case of failure, only the states ci(j) and cj(i)
become affected. An exception to this is when a receiver node
is the destination of more than one flow. Since, the overhearing
event concerns primarily the nodes and not the flows, the
feedback information should update all the states of vector
c that correspond to flows that have as destination this given
node. Note that this complicates the construction of the virtual
network but does not affect the analysis for the stability of it.
In Figure 5, all possible links are identified for the case of
disjoint receivers. Note for example, that n1

uu is not directly
connected with n1

gg since in order to move from n1
uu to n1

gg at
least two transmissions are needed.

The special case when we consider symmetric flows i, j is
captured by the model by simply setting qij = qji = 1. In this
case, the problem becomes simpler as regards these two flows.
Note that for F = 2 and 1, 2 symmetric flows, the problem is
the same with [4]. However, in the general case there can be
symmetric and non-symmetric flows arriving at the relay.

The problem of scheduling the packets in the original
downlink system is mapped to the problem of scheduling the
packets in the corresponding virtual network. By representing
one queue in the original problem with a subnetwork, we
have added another dimension which captures the knowledge
obtained progressively about the overhearing states of each
packet using the feedback received at the relay. For two
packets backlogged in the same virtual node, the scheduler has
the same belief and thus these two packets are stochastically
equivalent in terms of transmission efficiency (i.e. the have the
same expected reward), a desired property that did not exist
in the previous set-up.

B. Optimal control of the virtual network

The virtual network developed in section IV-A differs from
the general network treated in [9] in the following important
aspect. When a control I ∈ I is selected and a packet is chosen

for transmission by node j, the destination of the packet is
random: one of the outgoing neighbors of node j. Hence the
results in [9] cannot be applied directly. However, the methods
used in [9] can be extended to analyze the network of interest
and to develop an algorithm with maximal stability region.

The virtual network G = (N , E) consists of the union
of F subnetworks, Gi = (Ni, Ei) , i = 1, 2. Let Ej ,N j be
respectively the set of outgoing links and neighbors of node
j ∈ N , and xj its backlog. Also, for a given control I , let
w(j,k)(I) be the probability that a packet transmitted by node
j ends up at node k ∈ N j .

We assume a slotted system and transmission rates as
follows: when control I ∈ I is chosen, the maximum number
of packets that may be “transmitted” by node j over the link
set Ej is µj(I).
• If a control I involves transmission from a single node j

located at subnetwork i, then

µk(I) =

{
rdown
i if k = j

0 otherwise ,

where rdown
i is the maximum number of packets that may

be transmitted from the relay to δi in a slot.
• If the control involves an XOR packet from nodes j1, j2

located at subnetworks G1,G2 respectively, then

µk(I) =

{
min{rdown

1 , rdown
2 } if k = j1or k = j2

0 otherwise .

We can now present the throughput region of the system.
Define the following set of flow variables for each of the
virtual network links f = {fe, e ∈ E}. For control I ∈ I
define the set of vectors f ,

Γ (I) =
{
f = {fe} : e = (j, k), f(j,k) = w(j,k)(I)f̂j :

0 ≤ f̂j ,≤ µj(I), j ∈ N , k ∈ N j
}

and define the convex hull of the sets Γ(I), : I ∈ I, C =
conv (Γ (I) , I ∈ I). The throughput region of the system can
now be defined:

Throughput Region: The throughput region of the system
is the set of arrival rates λ = {λj}j∈N , λj ≥ 0, for which
there exists a vector f ∈ C such that for any node j ∈ N
except the destination nodes it holds∑

e=(k,j)∈Ek
fe + λj ≤

∑
e∈Ej

fe.

Evidently, we have λj = 0,∀j ∈ N \ {n1
u, n

2
u}, thus

the throughput region can be thought as a two-dimensional
object. The derivation of the throughput region is based on
an extension of the methodology developed in [11]. The
same reasoning can be used to extend the characterization
for the case of F flows and pairwise XORing, see [12].
Based on the throughput region described above and using
Lyapunov function techniques as in [9], it can be shown that
the algorithm described below has maximal stability region.

Algorithm 2: At each decision slot:
1) For each control I = {j}, j ∈ G form the cost Z(I) =

xjµj (I)



2) For each control I = {i, j}, i, j ∈ G, j 6= i

• form the weights

zi(I) = max

{
xi −

∑
k∈N i

w(i,k)(I)xk, 0

}
,

zj(I) = max

{
xj −

∑
k∈N j

w(j,k)(I)xk, 0

}
,

• and then the cost

Z(I) = zi(I)µi (I) + zj(I)µj (I) .

3) Then select I∗ = arg maxI∈I{Z(I)}.

V. CONCLUSIONS

Scheduling of pairwise XORs with statistical overhearing
information and feedback is optimized using the dynamic
backpressure policy on a virtual network created for this
problem. The virtual network mechanism and structure is
explained and an optimal algorithm is proposed that stabilizes
the system. Future work of interest pertains to generalizing
the model, considering uplink and downlink jointly as well as
multihop scheduling, allowing for storing of encoded pack-
ets, including channel erasures and developing approximation
algorithms for the case of |P| > 2.
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